
L3

Contents
1 Language Features 1

1.1 Commenting 1
1.2 Primitive Types 1
1.3 Literals 2
1.4 Global State 3
1.5 Tuples 3
1.6 Maps 4
1.7 Sum Types 4
1.8 Records 5
1.9 Registers 5
1.10 Polymorphic Types 6
1.11 Statements and Expressions 6
1.12 Defining Constants and Operations 10
1.13 Components 11
1.14 Recursion 12

1.15 Instruction Set Definitions 14

2 Tutorial 16

A Primitive Types and Operations 21
A.1 Unit 21
A.2 Bool 21
A.3 Nat 22
A.4 Int . 22
A.5 Bit-vectors 23
A.6 Bit-strings 25
A.7 Characters and Strings 26
A.8 Floating-point 27
A.9 Miscellaneous operations 28

B Syntax 34

1 Language Features
This document gives a overview of the L3 specification language. The language is imperative,
first-order, case-sensitive and strongly typed.

1.1 Commenting
Block comments are delimited by ‘{-’ and ‘-}’. Inline comments start with ‘--’ and extend to the
end of the current line. All commented code is simply ignored. Block comments can be nested,
which means that it is possible to comment out code that already contains comments.

1.2 Primitive Types
The primitive types of the language are:

unit bool char nat int bits(·) rounding .
Types can be combined into tuples (with the ‘*’ operator) and maps (with the ‘->’ operator).
Finite set, option and list types can be formed with the ‘set’, ‘option’ and ‘list’ postfixes. An
equality type is any type that excludes map types. The equality comparison operation ‘==’ can
only be used to compare members of equality types. Furthermore, sets can only be constructed
over equality types.

The infix ‘::’ is used for type annotation. For example, ‘1::bits(16)’ denotes a 16-bit word
with value one. For convenience, this bit-vector annotation can be shortened to ‘1`16’.

1

Synonyms The ‘type’ construct can be used to introduce new type synonyms; for example, the
following are valid type declarations:

type word = bits(32)
type mem = bits(32) -> bits(8)
type foo = word set * mem * bool

Type synonyms can be used interchangeably with their defining type. In the context of the type
declarations above, we can introduce a new constant ‘four’ as follows:

word four = 4::bits(32)

The extra type annotation is unnecessary here but it helps demonstrate that ‘bits(32)’ and the
synonym ‘word’ are effectively one and the same.

1.3 Literals
The ‘unit’ type has a single element ‘()’. The ‘bool’ type has two elements: ‘true’ and ‘false’. The
string type ‘string’ is a pseudonym for ‘char list’. String literals are represented using double
quotes and character literals are preceded by a hash; for example, ‘"hello"’ is a string and ‘#"a"’ is
a character. The type ‘rounding’ has four elements: ‘roundTiesToEven’, ‘roundTowardPositive’,
‘roundTowardNegative’ and ‘roundTowardZero’.

The language supports three numeric types: ‘nat’, ‘int’ and ‘bits(·)’. Number literals can
be expressed using binary, decimal or hexadecimal notation; as indicated by the prefixes ‘0b’, ‘0d’
and ‘0x’ respectively.1 An additional prefix character (‘n’, ‘i’ or ‘w’) can be used to avoid explicit
type annotation; for example, ‘0i15’ and ‘0ixF’ both denote the integer value fifteen. A number
without any prefixes is treated as a decimal bit-vector, wherein leading zeroes are ignored. Bit-
vectors can be represented using a special quotation syntax; for example, ‘'0101'’ is equivalent
to ‘0b101`4’.

Bit-string literals L3 allows lists of Booleans (bit-strings) to be treated as numeric values,
with the head of the list representing the most significant bit. No constraint is placed on the
length of bit-strings.2 This makes bit-strings distinct from bit-vectors, which are fixed width
(as constrained by the type). The prefix character ‘s’ may be used to identify bit-string literals.
Leading zeroes are significant when bit-string values are presented in binary or hexadecimal
formats; for example, the expressions ‘0b00001101::bool list’ and ‘0sx0D’ both represent the
list

list {false, false, false, false, true, true, false, true} .

Consequently, the bit-string values ‘0sxD’ and ‘0sx0D’ are not equal. Note that leading zeroes are
ignored in decimal bit-string expressions; for example, ‘029::bool list’, ‘0sd29’ and ‘0s11101’
all represent the same bit-string. When the prefix ‘s’ is used on its own, the expression is parsed
as a binary value (this means that ‘0s20’ will fail to parse).

1Octal is not supported.
2The bit-string type represents a countably infinite set of values.

2

1.4 Global State
Global variables are introduced using the ‘declare’ construct, which adds elements to the global
state-space. The following represent valid variable declarations:

declare number :: nat
declare { integer :: int, boolean :: bool } -- two declarations
declare { pc :: bits(32) r1 :: bits(64) } -- commas are optional

At the point of declaration, it is not possible to specify initial values. Users can specify (and later
call) their own initialisation procedures if required.

The ‘<-’ operator is used to assign values to mutable variables; for example

pc <- 0xF -- an assigment

assigns value ‘0xF’ to our declared global variable ‘pc’. The bit-string and bit-vector types also
permit assignment to bit-ranges; for example

{ pc<3:0> <- 0xF; pc<31> <- true } -- a sequence of assigments

will set the bottom four bits and then the most-significant bit of ‘pc’.

1.5 Tuples
Tuples can be formed using the pairing constructor ‘,’, which associates to the right. Bracketing
is optional (but recommended); for example, all of the following expressions are semantically
identical:

"one", true, false
"one", (true, false)
("one", true, false) -- preferred form
("one", (true, false))

These expressions have type ‘string * bool * bool’.3 Note that the expression

(("one", true), false)

has type ‘(string * bool) * bool’, which makes it strictly type distinct from (incompatible
with) the previous expression.

Note that (in expressions) commas are the loosest binding operator, which means that

x, y == 3, 4

will parse as

(x, ((y == 3), 4)) -- fully elaborated form

and not as

(x, y) == (3, 4) -- this could be what was intended

It is advisable that users only drop brackets when there is little chance of ambiguity.
3This is the same as ‘string * (bool * bool)’.

3

1.6 Maps
Maps are used to represent total functions.4 For example, the declaration

type map :: nat -> int -- a map type pseudonym

introduces a type pseudonym for maps with domain ‘nat’ and codomain ‘int’. Maps and single
map entries can be assigned to; for example, given the declaration

declare -- three global maps
{

m1 :: map
m2 :: map
m3 :: nat -> nat

}

the statement
{ m1 <- m2; m1(1) <- 2 }

will set map ‘m1’ to be ‘m2’ and this map is then updated so that ‘m1(1)’ takes value ‘2’.
The language encourages the use of simple, un-curried maps, which means that the type

type map :: bool * nat -> int

should be used in preference to
type nmap :: nat -> int
type map :: bool -> nmap

In particular, the language does not permit the syntax ‘m(true)(2)’ whereas ‘m(true, 2)’ is fine.
The language does not provide a mechanism for specifying anonymous functions or anonymous

maps.5 Furthermore, maps and operations (either primitive or user defined) are considered to be
distinct. As such, it is not possible to make assignments of the form ‘m3 <- Log2’.

1.7 Sum Types
Enumerated and sum (tagged union) types can be introduced using the ‘construct’ keyword.
For example, the declaration:

construct enumerated { Zero One Two Three } -- a new type called "enumerated"

introduces a new type ‘enumerated’ that consists of four elements (new constants). Sum types
can be declared in a similar manner; for example:

construct bool_option
{ BoolNone, BoolSome :: bool } -- an unnecessary variant of "bool option"

The elements of this new type are: ‘BoolNone’, ‘BoolSome(false)’ and ‘BoolSome(true)’.6 Every
constructor of the sum type must map from a pre-existing type (or be nullary) and this precludes
the definition of new recursive or mutually recursive datatypes.

Enumerated types (where every constructor is nullary) admit casting to/from numeric types.7
For example, ‘[One]::nat’ is equal to ‘0n1’ and ‘[0n1]::enumerated’ is equal to ‘One’.

4Maps must have an equality type as their domain. They can be viewed as a form of array and are typically used
to model memories and register banks.

5The function ‘fn x => x + 1’ is an example of an anonymous function in Standard ML.
6The brackets are needed here; for example, ‘BoolSome true’ will not parse.
7The same does not hold for general sum types.

4

1.8 Records
Record types can be introduced using the ‘record’ construct. The following is an example of a
record declaration:

record rec
{

number :: nat
integer :: int
boolean :: bool

}

Every value of type ‘rec’ has three components, which may be accessed using dot notation; for
example, if we have a global variable

declare rec :: rec

then the sub-elements are ‘rec.number’, ‘rec.integer’ and ‘rec.boolean’. The language does not
provide a syntax for record literals. As such, records must be built up incrementally; for example,
the following is a sequence of assignments to components of the variable ‘rec’:

{ rec.number <- 1; rec.integer <- 2; rec.boolean <- true }

It is not possible to express this with a single assignment to ‘rec’.

1.9 Registers
Register types can be introduced using the ‘register’ construct; for example:

register sreg :: bits(32)
{

31-28: FLAGS
7-0, 27-16: MODE
15-12: MASK

}

This declares a new type ‘sreg’ that represents the following 32-bit register:
31 28 27 16 15 12 11 8 7 0

FLAGS MODE<11:0> MASK MODE<19:12>

Note that the bit-field 11..8 of ‘sreg’ does not correspond with a named component. Also note
that fields are allowed to be non-contiguous, which is the case for the ‘MODE’ field. Register types
are essentially special forms of record types, with the automatic specification of bijections to
a bit-vector representation. Each named bit-field can be accessed using the dot notation; for
example, if we have

declare status :: sreg

then the fields ‘status.FLAGS’ and ‘status.MASK’ have type ‘bits(4)’ and ‘status.MODE’ has type
‘bits(20)’. Unlike records, register types automatic admit casting to/from an underlying bit-
vector type. The expression ‘&status’ gives the value of the register (with type ‘bits(32)’) and
‘sreg(0xFFFF0000)’ constructs a register of type ‘sreg’. It is possible to use this notation to update
arbitrary bit-fields of a register; for example, the statement:

&status<20:7> <- '11101101100111'

will update the bit-field 20..7 of ‘status’ using the 14-bit literal value.

5

1.10 Polymorphic Types
Users cannot declare their own polymorphic types. Furthermore, all user defined operations and
variables must be monomorphic. The language does, however, provide support for three built-in
polymorphic datatypes, which may be used under the proviso that these types are always fully
type instantiated (free of type variables).

1.10.1 Lists
The language provides limited support for working with lists. Lists can be specified as follows:

list { 0n0, 2, 4 } -- a list of naturals (length three)
0n0 @ 2 @ 3 @ Nil -- expanded version
Cons (0n0, Cons (2, Cons (4, Nil))) -- equivalent version

These expressions have type ‘nat list’. Given the first-order nature of L3, only simple list
operations are provided (for example: ‘Head’, ‘Tail’ and ‘Length’). Higher-order list operations,
such as filter, map and fold, are not available.

1.10.2 Finite Sets
The language provides basic support for finite sets. Sets can be specified as follows:

set { 0n0, 2, 4 } -- a three element set (of naturals)
0n0 insert 2 insert 4 insert set {} -- an expanded version
SetOfList (list { 0n0, 2, 4 }) -- a version built from a list

These expressions have type ‘nat set’. The infix operators ‘in’ and ‘notin’ test for set member-
ship; for example, the expressions

0n0 in set { 0, 2, 4 } -- test for membership
0n1 notin set { 0, 2, 4 } -- test for non-membership

both evaluate to ‘true’. Sets can only be defined over equality types. It is not possible, for
example, to construct the type ‘(bool -> bool) set’.

1.10.3 Option Types
The option type is a polymorphic sum type that has two constructors: ‘None::α option’ and
‘Some::α→α option’. Option types are helpful when specifying partial operations.

1.11 Statements and Expressions
This section presents the statements and expressions of the language. Statements can be grouped
into blocks using the syntax

{
statement1; -- do this
statement2; -- then do this
· · ·

}

6

Each block, and sub-statement, has type ‘unit’. The operator ‘;’ is strictly binary: trailing semi-
colons not permitted at the end of a sequence of statements. Expressions are distinct from
statements, in particular expressions preclude assignments.

1.11.1 Nothing
The statement ‘nothing’ has no effect. Its primary purpose is to facilitate the specification of
control flows wherein some paths do something (update the state) and others do nothing.8

1.11.2 Conditionals
The language supports if-then-else statements and expressions, and when-do statements. The
latter is provided as a convenient shorthand; that is to say, the statement

when p do x

is equivalent to the statement

if p then x else nothing

Note that the language does not support layout syntax (the off-side-rule).

1.11.3 For Loops
The language provides support for simple for-loop statements. On each iteration of a for-loop,
a natural number index variable is either incremented or decremented (by one). This process is
repeated until the index value reaches a pre-computed upper or lower bound; for example, the
loop statements

for i in 1 .. 3 do proc(i)
for i in 3 .. 1 do proc(i)

are respectively equivalent to

{ proc(1); proc(2); proc(3) }
{ proc(3); proc(2); proc(1) }

The initial and final loop index values may be arbitrary natural number expressions. As such,
it may be the case that the loop direction will only be known once these bound expressions are
computed.

In addition to regular for loops, the language also supports foreach loops, which operate over
lists. For example, the following code makes three calls to ‘proc’:

foreach i in list {0n2, 4, 6} do proc(i)

Note that this construct will also work for bit-strings and for normal strings.
There is no support for do while or repeat until loops.

8The ‘nothing’ statement is essentially syntactic sugar for ‘()’.

7

1.11.4 Exceptions, Unknown and Undefined
The keyword ‘UNKNOWN’ is used to represent an unspecified element, which may be of any given
type. The language does not stipulate whether or not this value should be chosen deterministi-
cally. If the value were chosen deterministically then the expression ‘UNKNOWN == UNKNOWN’ will
always be ‘true’. However, if the choice is non-deterministic then there is no way of knowing if
an occurrence of this expression is ‘true’ or ‘false’.

The language supports user defined exceptions, which may be raised but not caught. The
‘exception’ keyword is used to declare new exception categories; for example

exception ASSERT :: string

introduces a new exception ‘ASSERT’ that takes a single string as an argument. This exception can
be raised in expressions and statements as follows:

#ASSERT ("an error has occurred")

Thus, exceptions can be used to flag the occurrence of a variety of different errors. The L3
interpreter will stop when an exception is raised. Exceptions can be raised within expressions
and are not constrained by return type.

The behaviour of various operations is undefined on some inputs; for example the arithmetic
expression ‘x div 0n0’ is undefined. For any given undefined expression, the language permits
three possible interpretations (implementations):

• A deterministic value can be chosen. For example: ‘x div 0n0’ is equal to ‘0n0’ is a valid
interpretation of this undefined expression.

• A non-deterministic value can be chosen. In particular, is not necessary for the expression
‘x div 0n0 == x div 0n0’ to be ‘true’.

• An exception can be raised.

It is expected that specifications will be designed with some preferred treatment of undefined
behaviour in mind. In this example one possible way to manage undefined cases is by taking
care to explicitly write code of the form ‘if n == 0 then ... else .. x div n .. ’. This will
ensure that undefined cases are unreachable.

1.11.5 Procedure Calls
A procedure is any user defined operation with return type ‘unit’. Procedures typically provide
functionality by means of updating the global state (through side effects). Procedures can be
called (and exceptions can be raised) in statement blocks; for example:

{
· · ·
proc (1, true); -- this is a procedure call
· · ·

}

The following code is valid but not recommended:

8

{
· · ·
#ASSERT "error"; -- raise an exception
proc (1, true) -- the L3 interpreter will never reach this code

}

In the above, the exception is unconditionally raised, so the remaining code should be regarded
as unreachable (redundant).

1.11.6 Local Variables
The L3 language supports two varieties of variables: mutable and immutable. All global vari-
ables are mutable. The keyword ‘var’ is used to declare new mutable variables with local scope.
Local variables can be introduced anywhere within a statement block and these variables can
be assigned to using the ‘<-’ operator. Immutable variables are introduced within a block using
the syntax ‘x = expr; . . .’ and this is treated as a let-statement. An immutable value cannot be
updated, however it can fall out of scope by declaring a new immutable variable with the same
name. The operators ‘<-’ and ‘=’ are not permitted in expressions.

The specification below uses two mutable variables ‘x’ and ‘y’:
{

var y = z;
var x = y;
if p then { x<3:0> <- '1111'; y <- x + 1 }

else { x<7:4> <- '1111'; y <- 0 };
return (x + y)

}

This could be respecified using immutable variables, for example
{

y = z;
x = y;
x, y = if p then (x || '00001111', x || '00001111' + 1)

else (x || '11110000', 0);
return (x + y)

}

It is not always easy to eliminate mutable variables. In this case the second specification is
more cumbersome because the bit-field update has been replace by an explicit mask (bitwise-or)
operation. This operations has been repeated in specify the value of ‘y’ because assignments are
not permitted in expressions.

Mutable variables can be declared without an initial assignment; for example, ‘var x’ is
equivalent to ‘var x = UNKNOWN’.

1.11.7 PatternMatching
The language supports match statements and expressions. Pattern matching is supported with
respect to: literals (see Section 1.3), constructors,9 (immutable) variables, wildcards (anonymous
variables) and bit-patterns.

9This includes matching on tuples, as well as ‘None’, ‘Some’, ‘Cons’ and ‘Nil’. Matching on finite sets and record
fields is not possible.

9

Given the type declarations:

construct enum { One Two Three }
construct data
{

NoData
Data1 :: string * bits(8)
Data2 :: enum * bits(16)

}

the following illustrates a match expression:

match y
{

case -1, NoData or -2, NoData => 0`4 -- note use of "or"
case _, Data1 ("hello", '11 x 11') => x + 1 -- use of bit-pattern
case i, Data2 (Three, '1111 y') => [i] + y<3:0>
case 1, Data2 (_, 8) => 4
case _ => 8

}

The body (right-hand side of ‘=>’) of the first case line with a matching pattern is selected. The
symbol ‘_’ is a wildcard and will match any value. The ‘or’ construct provides a shorthand for
writing blocks of clauses with differing patterns but the same body.

The terms ‘'11 x 11'’ and ‘'1111 y'’ are called bit-patterns and they will match against a set
of bit-vector values. From the type declaration of ‘data’, it is known that the variable ‘x’ must
represent a 4-bit value because it occurs in the middle of an 8-bit word (the match requires bits
‘11’ as a prefix and as a suffix). Likewise, ‘y’ must be a 12-bit value. Multiple variables can occur
in a bit-patterns, for example, ‘'1 x 1 y 0'’ is a valid bit-pattern. The type checker will often
be able to infer the type of pattern variables and if this fails type annotations can be added.

The ‘pattern’ construct can help avoid situations where explicit annotations are repeatedly
required (causing clutter in patterns). If, for example, the variable ‘imm5’ is frequently used to
match a 5-bit value then the following declaration can be made:

pattern imm5 :: bits(5)

In subsequent code the default type for pattern variable ‘imm5’ will be ‘bits(5)’. The ‘pattern’
construct only influences type checking. If a particular type hint is no longer appropriate then
it can be dropped; for example, one can insert the declaration ‘clear pattern imm5’.

1.12 Defining Constants and Operations
Users can construct operational semantics style formal specifications in L3 by defining their own
constants and operations. There is no module system or facility for local definitions; all user
definitions are made at the top-level with global scope. User constants and operations cannot be
overloaded or redefined.

A pure constant is a nullary (zero argument) operation that is state independent; for example,
the following code declares a new constant:

bits(32) UINT_MAX = 0xFFFFFFFF

10

The following code declares operations that are nullary but state dependent:

declare number :: Nat
nat numberPlus1 = return (number + 1)
unit incNumber = number <- numberPlus1

Users can also declare new unary operations, which may or may not be state dependent; for
example:

nat numberMinusN (n::nat) = return (number + n) -- state dependent
unit decNumber () = number <- numberMinusN (1)
nat mla (m::nat,n::nat,a::nat) = return (m * n + a) -- pure

The operation ‘mla’ is unary because it takes a single triple as an argument. To enhance clarity
and avoid misunderstandards, users may elect to specify nullary state dependent operations using
a single ‘unit’ argument. Given the declarations above, the expression ‘decNumber()’ gives the
clear impression that a call is being made (with possible side-effects), wheres the expression
‘incNumber’ does not.

At the point of declaration, operation arguments must be fully type annotated and only
monomorphic types are allowed.10 It is, nevertheless, possible to declare bit-vector operations
that are valid with respect to some given set of bit widths, for example, the following are valid
declarations:

--- valid for any bit-vector width N ---
bits(N) bv_mla (m::bits(N), n::bits(N), a::bits(N)) = return (m * n + a)

--- valid for sufficiently wide bit-vectors (N greater than eight) ---
bool bit8 (x::bits(N)) with N > 8 = return (x<8>)

An L3 type error will arise if ever an application of the operation ‘bit8’ violates the bit width
constraint. Note that vector width variables (such as ‘N::nat’ above) can be used as if they were
a regular variables in the definitional body of an operation.

1.13 Components
When specifying instruction set architectures, the two most significant programmer’s model
components are typically the main memory and a collection of general purpose registers. In the
MIPS architecture, for example, there are thirty-two general purpose registers, which may be
represented using the following map:

declare gpr :: bits(5) -> bits(64)

The statement

gpr(d) <- gpr(r)
10An compile time error will arise if the type checker is not able to infer all types: the final definition must be

free of type variables.

11

then expresses moving a value from register ‘r’ to register ‘d’. However, register a memory access
is frequently more complicated than this; in particular, registers can be banked and memory can
be complex.11 As such, it is often necessary to specify collections of operations for accessing
(reading and writing) these components. With the MIPS example, register zero is special (it is
a constant value) and so one could define the following operations:

bits(64) read_gpr (n::bits(5)) = if n == 0 then 0 else gpr (n)
unit write_gpr (v::bits(64), n::bits(5)) = when n <> 0 do gpr (n) <- v

Thus, the previous register transfers would now be specified as follows:

write_gpr (read_gpr (n), d)

This precise style of specification is not entirely satisfying though, since it departs in appearance
from the pseudo code found in MIPS reference manuals. The L3 language provides a special
mechanism for specifying a pair of operations that read and write state components. With the
MIPS example, the following declaration can be made:

component GPR (n::bits(5)) :: bits(64)
{

value = if n == 0 then 0 else gpr(n)
assign value = when n <> 0 do gpr(n) <- value

}

One can then write:

GPR(d) <- GPR(r)

which is closer to the syntax used in the MIPS reference manuals. The ‘component’ construct
effectively provides a controlled form of operator overloading, whereby the ‘assign’ operation12

is select when the operator name appears on the left-hand side of an assignment (‘<-’) and the
‘value’ operation13 is applied otherwise. Semantically, these two operations are exactly the same
as the manually defined versions ‘write_gpr’ and ‘read_gpr’. The “write” operation will always
have a ‘unit’ return type. Users are free to specify the “read” and “write” operations in any manner
that they deem appropriate; however, the “write” operation cannot be defined recursively, nor
can the “read” operation call the “write” operation.

1.14 Recursion
The language permits the definition of recursive operations. It is not possible to define mutually
recursive operations.

The L3 language has been designed to act as an authoring front-end for the HOL4 theorem
prover; facilitating the task of writing instruction set specifications. In order to successfully
import an L3 specification, it is necessary for the HOL4 system to prove that every user defined

11ARM registers are banked according to processor mode. Memory can often be accessed with big- and little-
endian byte ordering. Special treatment may be needed for unaligned memory addresses, for example, when reading
a 16-bit value from an odd address. There may also be address translation (virtualisation) and memory hierarchies
(caching).

12In this example the “write” operations is internally called ‘write'GPR’.
13Internally the “read” operation is simply called ‘GPR’.

12

operation is total (terminates on all inputs). If an L3 function is non-terminating then it will
be impossible to export that definition to HOL4. If a function is terminating but the standard
automation of HOL4 is unable to construct a termination proof, then it may be necessary to
provide the prover with a hint in the form of a measure.

Consider the following specification:

declare m :: bits(8) -> bits(8)

unit load (a::bits(8), l::bits(8) list) =
match l
{

case Nil => nothing
case Cons (h, t) => { m(a) <- h; load (a + 1, t) }

}

The ‘load’ operation recurses over the list ‘l’, loading values into the map ‘m’. At the time of
writing this documentation, trying to build the exported HOL4 version of this specification
gives rise to the following error message:

Initial goal:

∃R.
WF R ∧
∀state a l h t.

(l = h::t) ⇒
R ((a + 1w,t),state with m := (a =+ h) state.m) ((a,l),state)

Exception raised at TotalDefn.Define:
between beginning of frag 0 and end of frag 0:
at TotalDefn.defnDefine:

Unable to prove termination!

Try using "TotalDefn.tDefine <name> <quotation> <tac>".

This occurs because HOL4 is unable to automatically prove that ‘load’ always terminates. To
get around this problem, the original L3 specification can be modified to contain an annotation
as follows:

unit load (a::bits(8), l::bits(8) list) measure Length(l) = ...

The metadata ‘measure Length(l)’ tells HOL4 to examine the length of the list ‘l’, since this
value will decrease upon each recursive call to ‘load’. When the length of the list is zero (the
‘Nil’ case) there are no recursive calls, so termination is guaranteed.

The expression occurring after the ‘measure’ keyword must be of type ‘nat’. After provid-
ing a measure, it is still possible that HOL4 will fail to prove termination, either because the
supplied measure is incorrect or because the termination proof is non-trivial (requires human
guidance and/or custom lemmas). If this occurs then users should either simplify/rewrite their
specifications or, if necessary, report the problem.

13

1.15 Instruction Set Definitions
When working with instruction set models, it is helpful to construct a datatype that represents
the set of machine (low-level) instructions. This datatype constitutes a simple form of abstract
syntax tree (AST) and it can be used to build: instruction decoders (identifying machine-code
instructions and splitting opcodes into sub-fields); instruction encoders (generating opcodes for
a given instruction); next-state functions (applying a semantics function for a given instruction)
and assembly code parsers.

By way of an example, consider the MIPS instruction ANDI: this instruction has the assembly
code syntax

ANDI rt, rs, immediate

and the following 32-bit machine-code encoding:

31 26 25 21 20 16 15 0

001100 rs rt immediate
6 5 5 16

The semantics of this instruction can be expressed with the operation:

unit run_ANDI (rs::bits(5), rt::bits(5), imm::bits(16)) =
GPR(rt) <- GPR(rs) && ZeroExtend (imm)

One could use this operation to directly specify a next-state function, which would be of the
form:

unit Next =
match Fetch -- fetches a 32-bit opcode from memory
{

· · ·
case '001100 rs rt imm' => run_ANDI (rs, rt, imm)
· · ·

}

This style of specification is direct and concise; however, it does lack some of the flexibility that
comes with using an instruction datatype. The L3 language provides support for an slightly
different style of specification. This alternative approach is explained by first examining how
one would specify things manually (explicitly) and then showing how L3 can streamline this
process.

Firstly, one could explicitly define an AST datatype for MIPS instructions; it would be of
the form:

construct instruction
{

· · ·
ANDI :: bits(5) * bits(5) * bits(16)
· · ·

}

14

This datatype provides a suitable constructor for the ANDI instruction. It is now possible to define
a decoder, which maps opcodes onto AST entries; for example:

instruction Decode (opc::bits(32)) =
match opc
{

· · ·
case '001100 rs rt imm' => ANDI (rs, rt, imm)
· · ·

}

This decoder can be used to define our next-state function, that is:

unit Next = Run (Decode (Fetch))

where ‘Run’ is defined by

unit Run (i::instruction) =
match i
{

· · ·
case ANDI (args) => run_ANDI (args)
· · ·

}

When working with full-scale architecture specifications (where the AST type is large), there
are some clear overheads associated with implementing this approach (in comparison with the
AST free version). It becomes challenging to maintain the AST datatype declaration and to
keep it correctly synchronised with the instruction semantics operations (such as ‘run_ANDI’)
and the definition of ‘Run’. Note, however, that there is great uniformity in the AST datatype
declaration and also in the definition of ‘Run’. As such, L3 is able to automatically define both
of these for the user.

To make use of this automation, the declaration of ‘run_ANDI’ is simply modified to:

define ANDI (rs::bits(5), rt::bits(5), imm::bits(16)) =
GPR(rt) <- GPR(rs) && ZeroExtend (imm)

The ‘define’ keyword tells L3 to define a semantics function14 (as before) and to also create a
new ‘instruction’ datatype AST entry; furthermore, the two will be linked with the automatic
construction of a ‘Run’ function. The ‘instruction’ type and ‘Run’ function become defined (in
scope) following the declaration ‘define Run’. After this declaration it is no longer possible to
use the ‘define’ construct again; however, it does become possible to define functions such as
‘Decode’ and ‘Next’.

Specifications that are based on using ‘define’ gain the benefits of declaring an instruction
AST datatype without the downside of laborious coding overheads. In the example above, the
overhead amounts to one extra line of code; this comes from defining a next-state function that
calls the dedicated decode function, followed by a call to ‘Run’.

One of the key advantages of declaring an instruction datatype is that it makes it consider-
ably easier to develop tools that work with assembly code syntax (performing parsing, encoding

14This function is internally called ‘dfn'ANDI’ instead of ‘run_ANDI’.

15

and pretty-printing). In this case, it is relatively easy, for example, to map between the MIPS
instruction syntax "andi $5, $6, 1024" and the expression ‘ANDI (5, 6, 1024)’. Defining an
encoder in L3 is relatively straightforward; for example:

bits(32) Encode (i::instruction) =
match i
{

· · ·
case ANDI (rs, rt, imm) => '001100' : rs : rt : imm
· · ·

}

Such a function can be used to write a MIPS assembler, which would map the assembly code
syntax "andi $5, $6, 1024" onto the machine-code value 0x30c50400.

2 Tutorial
This section gives a brief overview of how to install and use L3.

Installation The sources for L3 can be downloaded from the following webpage:

www.cl.cam.ac.uk/~acjf3/l3

The file l3.tar.bz2 can be unpacked with the command:

$ tar xvjf l3.tar.bz2

This will create a directory of the form L3-YYYY-MM-DD, where the year, month and day will
correspond with the release date. The current version of L3 depends upon Poly/ML 5.7, which
can be obtained from the site polyml.org. If Poly/ML is installed then L3 can be built as follows:

$ cd L3-YYYY-MM-DD
$ make

Once built, the following should appear when you start L3:15

$ l3
<< L3 >>
>

Users should consider running L3 with the command rlwrap l3.16

15This assumes that the directory L3-YYYY-MM-DD/bin has been added to the PATH environment variable.
16Details on rlwrap utility can be found at the site freecode.com/projects/rlwrap.

16

www.cl.cam.ac.uk/~acjf3/l3
l3.tar.bz2
L3-YYYY-MM-DD
polyml.org
L3-YYYY-MM-DD/bin
PATH
rlwrap
freecode.com/projects/rlwrap

Basic Interaction The command prompt for L3 is essentially the read-eval-print loop (REPL)
of Poly/ML. As such, users are free to write arbitrary Standard ML code. The structure Runtime
enables interaction with L3. The following shows an arithmetic evaluation in Standard ML, as
well as in the L3 interpreter (evalQ):

> 1 + 2;
val it = 3: int
> Runtime.evalQ `0i1 + 2`;
val it = `0i3`: Term.term

Various error messages can occur when using the interpreter; for example:

> Runtime.evalQ `1 + 2`;
Exception- Fail "Could not infer all types" raised

> Runtime.evalQ `0i2 div 0`;
Exception- Except ("Div", SOME ("div" (int, [`0i2`, `0i0`]))) raised

The first error occurs because unannotated number literals are regarded as bit-vector values and
here the vector width cannot be inferred.

L3 declarations can be made using the function loadQ. The following sequence shows the
declaration and manipulation of a global variable:

> Runtime.loadQ `declare n :: nat`;
<VAR> n
val it = (): unit

> Runtime.evalQ `n`;
val it = `UNKNOWN::nat`: Term.term

> Runtime.evalQ `{ n <- 3; n }`;
val it = `0n3`: Term.term

The global state can be examined using the function show; for example:

> Runtime.show();
val it = [("n", `0n3`)]: Eval.term_stack

The state can be “wiped” clean using the function reset and all declarations can be wiped using
‘resetAll’; for example:

> Runtime.reset();
val it = (): unit
> Runtime.show();
val it = [("n", `UNKNOWN::nat`)]: Eval.term_stack

> Runtime.resetAll();
val it = (): unit
> Runtime.show();
val it = []: Eval.term_stack

The function ‘LoadQ’ is similar to ‘loadQ’ but it performs a ‘resetAll’ before making declarations.

17

Constants The structure Consts provides various functions for working with L3 constants.
Many of the operation in the Consts structure will be of little interest to end-users, however it
can be used to display some helpful information.

The function Consts.lookupConst can be used to lookup an operation; for example:

> Consts.lookupConst "Log2";
val it = Primitive [(bits(a) -> bits(a), -), (nat -> nat, -)]: const

Since ‘Log2’ is a primitive operation, only the valid types (ordered by overload priority) are show.
With user operations, the internal representation (definition) of the operation will be shown;
for example:

> Runtime.LoadQ `unit demo () = ()`;
> Consts.lookupConst "demo";
val it = Definition (Abs ([("_", (unit, -))], unit -> unit, `()`), NONE, 1):

Consts.const

The functions Consts.listDefinitions and Consts.listExceptions provide details of all user
operations and exceptions respectively. The function ‘Consts.stats’ gives a summary of all the
current declarations:

> Consts.stats();
Primitives 188
Destructors.............. 5
Constructors............. 0
Accessors 0
Exceptions............... 0
User operations.......... 1
Instruction definitions.. 0

Here the constructors for primitive types (such as ‘Cons’) are counted under “primitives”.

Types The Types structure can be used to display information relating to L3 types. In partic-
ular, this structure provides the functions Types.lookupConst and Types.listConsts, which are
demonstrated below:

> Runtime.loadQ `construct enum {One Two Three}`;
> Types.listConsts();
val it =

[("enum",
{eq = true, ast = false, def = Constructors (Enum <dict(3)>), num = 0})]:

(string * typeconst) list

> Types.lookupConst "int";
val it = SOME {eq = true, ast = false, def = BaseType, num = ~1}:

typeconst option

18

Loading and Exporting Specifications When writing an L3 specification, it is expected that
user declarations will be contained in an L3 source file. A sample instruction set specification
(tiny.spec) can be found in the L3 distribution subdirectory examples. This specification is
based on Thacker’s pedagogical Tiny 3 architecture; it can be loaded as follows:

> Runtime.LoadF "tiny.spec";
Loading... tiny.spec
<TYP> regT
<TYP> wordT
· · ·
<FUN> test_prog
Done.

The string argument to the functions Runtime.loadF and Runtime.LoadF can be in the form of
a comma separated list of files, which will be loaded in order. That is, the call

Runtime.loadF "a.spec, b.spec"

will load a.spec followed by b.spec.
The function HolExport.export will export the current L3 specification in the form of an

HOL4 script; for example:

> HolExport.export "tiny";
raise'exception ok.
function ok.
· · ·
m'extend skip.
m'unextend skip.
Created file: tinyScript.sml
Created file: tinyLib.sml
Created file: tinyLib.sig
Done.

The function HolExport.spec provides a convenient shortcut for performing LoadF and export
using just a single call; for example, HolExport.spec ("tiny.spec", "tiny") will perform the
load and export presented above.

L3 is capable of exporting two styles of HOL specification: an explicitly monadic version
(based on state_transformerTheory); and a version that directly manipulates state using let-
expressions (which is the default style). For example, a monadic version of the Tiny specifi-
cation can be exported using the command HolExport.spec ("tiny.spec", "tiny monadic").
Other export options include: sigdocs/ nosigdocs (for setting HOL’s TheoryPP.include_docs
trace variable), bigrecords/ nobigrecords (for controlling HOL’s Datatype.big_record_size)
and underflowbefore/ nounderflowbefore (for selecting the required IEEE 754 underflow be-
haviour).

Generated HOL4 specifications are not designed to be manually edited (or human readable).
To build an L3 specification script, the HOL library Import is needed. This library is currently
located in the directory $HOL_DIR/examples/l3-machine-code/common and so adding this path to
the INCLUDES variable of a local Holmakefile is recommended. The examples/l3-machine-code
directory contains various examples of using L3 generated specifications.

19

tiny.spec
examples
state_transformerTheory
Import
$HOL_DIR/examples/l3-machine-code/common
INCLUDES
Holmakefile
examples/l3-machine-code

Testing Specifications Having written an L3 specification, it is fairly easy to write code (in
Standard ML) that runs test vectors. Code for running the tiny.spec example can be found in
the file run-tiny.spec. In this test harness, the Tiny state is initialised, and a small test program
is loaded, simply by evaluating the expression ‘initialize (test_prog)’.

It is also possible to evaluate (run) models that have been exported to HOL4. The file
run-tiny.sml shows how this can be accomplished for the Tiny example.

20

run-tiny.spec
run-tiny.sml

A Primitive Types and Operations
The primitive types are as follows:

unit bool char nat int bits(·) rounding

There are two infix type constructors: ‘*’ for pairs, and ‘->’ for maps. There are also postfix type
constructors ‘set’, ‘option’ and ‘list’; for example, sets of strings are represented by the type
‘string set’. The following sections describe these primitive types, together with some details
of associated operations. The following constants and operations are available:

nullary () Nil None false roundTiesToEven roundTowardNegative
roundTowardPositive roundTowardZero true

prefix ! - ~ Abs Cardinality Cons Difference Drop Element FP32_Abs
FP32_Add FP32_Equal FP32_IsNan FP32_LessThan FP32_Mul
FP32_Neg FP32_Sub FP64_Abs FP64_Add FP64_Equal FP64_IsNan
FP64_LessThan FP64_Mul FP64_Neg FP64_Sub FromBinString
FromDecString FromHexString Fst Head IndexOf InitMap
Intersection IsAlpha IsAlphaNum IsDigit IsHexDigit IsLower
IsMember IsSome IsSubset IsUpper Length Log2 Max Min Msb
QuotRem Remove RemoveDuplicates RemoveExcept Reverse
SetOfList SignExtend SignedMax SignedMin Size Snd Some Tail
Take ToLower ToUpper Union Update ValOf ZeroExtend not

infix != && * ** + , - : < <+ <= <=+ <> == > >+ >= >=+ ?? @ ^ || >>
<< >>+ #<< #>> and div in insert mod notin or quot rem

sdiv
smod
other · <·> · <·:·> [·] fields splitl splitr tokens

Many arithmetic operations are overloaded. Unless otherwise stated, the order of selection is:
‘bits(·)’, ‘nat’, ‘int’ and then ‘bool list’.

A.1 Unit
The type ‘unit’ represents the singleton set containing the value ‘()’. The primary use of this
type is as the return type for procedures.

A.2 Bool
The type ‘bool’ represents the two element set B = {‘true’, ‘false’}. The following standard
Boolean operations are available:

negation not, ! bool → bool
conjunction and bool× bool → bool
disjunction or bool× bool → bool
equality == α×α → bool
non-equality <>, != α×α → bool

21

~
>>
<<
>>+
#<<
#>>

The infix operators ‘and’ and ‘or’ are interpreted with short-circuit evaluation; for example, in the
expression ‘false and f()’ the value of ‘f()’ is not computed, as the overall expression will always
evaluate to false. This short-circuiting influences the side-effects that occur during expression
evaluation.

There are two prefix symbols for logical negation (these are semantically identical) with ‘!’
binding slightly tighter than ‘not’. This distinction is becomes significant when working with
equalities; for example: ‘not a == b’ is taken to be ¬(a = b), whereas ‘!a == b’ is (¬a) = b.

Equality is only defined with respect to equality types, represented here by the type variable
α. An equality type is any type built without the used of the map operator ‘->’.

A.3 Nat
The type ‘nat’ represents the natural numbers N = {0, 1, 2, . . . }. The following operations are
available:

logarithm (base two) Log2 nat → nat
minimum value Min nat× nat → nat
maximium value Max nat× nat → nat
less than < nat× nat → bool
greater than > nat× nat → bool
less than or equal to <= nat× nat → bool
greater than or equal to >= nat× nat → bool
addition + nat× nat → nat
subtraction - nat× nat → nat
multiplication * nat× nat → nat
exponentiation ** nat× nat → nat
division div nat× nat → nat
modulus mod nat× nat → nat

The ‘div’ and ‘mod’ operations satisfy the following property:

∀n. 0 < n =⇒ ∀k. k = (k div n) ∗ n+ (k mod n) ∧ (k mod n) < n .

The expressions ‘Log2(0)’, ‘x div 0’ and ‘x mod 0’ are all undefined .17

A.4 Int
The type ‘int’ represents the integers Z = N∪{−1,−2,−3, . . . }. The following operations are
available:

17The interpreter will raise an exception when attempting to evaluate them.

22

unary minus - int → int
absolute value Abs int → int
minimum value Min int× int → int
maximum value Max int× int → int
less than < int× int → bool
greater than > int× int → bool
less than or equal to <= int× int → bool
greater than or equal to >= int× int → bool
addition + int× int → int
subtraction - int× int → int
multiplication * int× int → int
exponentiation ** int× nat → int
quotient and remainder QuotRem int× int → int× int
quotient quot int× int → int
remainder rem int× int → int
division div int× int → int
modulus mod int× int → int

The operation ‘Abs’ gives an positive integer value; for example, ‘Abs(-2)’ = ‘2’. The integer
operations ‘quot’ and ‘div’ are related to natural number division as follows:

i quot j =



z(n(i) div n(j)) 0 < j ∧ 0 ≤ i

− z(n(−i) div n(j)) 0 < j ∧ i < 0

− z(n(i) div n(−j)) j < 0 ∧ 0 ≤ i

z(n(−i) div n(−j)) j < 0 ∧ i < 0

undefined j = 0

and

i div j =



z(n(i) div n(j)) 0 < j ∧ 0 ≤ i

− z(n(−i) div n(j)) 0 < j ∧ i < 0 ∧ n(−i) mod n(j) = 0

− z(n(−i) div n(j))− 1 0 < j ∧ i < 0 ∧ n(−i) mod n(j) ̸= 0

− z(n(i) div n(−j)) j < 0 ∧ 0 ≤ i ∧ n(i) mod n(−j) = 0

− z(n(i) div n(−j))− 1 j < 0 ∧ 0 ≤ i ∧ n(i) mod n(−j) ̸= 0

z(n(−i) div n(−j)) j < 0 ∧ i < 0

undefined j = 0

where z : N→Z and n : Z→N are value preserving maps. The ‘rem’ and ‘mod’ operations satisfy
the equations:

i rem j =

{
i− (i quot j) ∗ j j ̸= 0

undefined j = 0
i mod j =

{
i− (i div j) ∗ j j ̸= 0

undefined j = 0 .

A.5 Bit-vectors
The type ‘bits(n)’ represents fixed-width (n-bit) words, also known as bit-vectors; for example,
bits(32) is the type of 32-bit machine words.18 The bits type can be viewed as representing

18These are called double-words (dword) in the x86 architecture and simply words in the ARM architecture.

23

the set Zn = {0, 1, . . . , 2n−1}, for some 0 < n. At the type system level no distinction is made
between signed and unsigned words; however, some operations (such as orderings) have signed
and unsigned variants.

The following bit-vector operations are available:

1’s complement ~ bits(n) → bits(n)
2’s complement - bits(n) → bits(n)
absolute value Abs bits(n) → bits(n)
logarithm (base two) Log2 bits(n) → bits(n)
zero-extend ZeroExtend bits(m) → bits(n)
sign-extend SignExtend bits(m) → bits(n)
reverse bits Reverse bits(n) → bits(n)
minimum value (u) Min bits(n)× bits(n) → bits(n)
maximum value (u) Max bits(n)× bits(n) → bits(n)
minimum value (s) SignedMin bits(n)× bits(n) → bits(n)
maximum value (s) SignedMax bits(n)× bits(n) → bits(n)
width/size Size bits(n) → nat
most-significant (sign) bit Msb bits(n) → bool
bit value · <·> bits(n)× nat → bool
bit field · <·:·> bits(m)× nat× nat → bits(n)
concatenation : bits(m)× bits(n) → bits(p)
duplication ^ bits(m)× nat → bits(n)
less than (s) < bits(n)× bits(n) → bool
greater than (s) > bits(n)× bits(n) → bool
less than or equal to (s) <= bits(n)× bits(n) → bool
greater than or equal to (s) >= bits(n)× bits(n) → bool
less than (u) <+ bits(n)× bits(n) → bool
greater than (u) >+ bits(n)× bits(n) → bool
less than or equal to (u) <=+ bits(n)× bits(n) → bool
greater than or equal to (u) >=+ bits(n)× bits(n) → bool
addition + bits(n)× bits(n) → bits(n)
subtraction - bits(n)× bits(n) → bits(n)
multiplication * bits(n)× bits(n) → bits(n)
quotient (s) quot bits(n)× bits(n) → bits(n)
remained (s) rem bits(n)× bits(n) → bits(n)
division (u) div bits(n)× bits(n) → bits(n)
modulus (u) mod bits(n)× bits(n) → bits(n)
division (s) sdiv bits(n)× bits(n) → bits(n)
modulus (s) smod bits(n)× bits(n) → bits(n)
bitwise conjunction && bits(n)× bits(n) → bits(n)
bitwise disjunction || bits(n)× bits(n) → bits(n)
bitwise exclusive-or ?? bits(n)× bits(n) → bits(n)

Unsigned operations are labelled with (u) and signed operations are labelled with (s).
The shift operations support shifting by either a bit-vector value or by a natural number value.

The overloading is resolved such that the ‘nat’ variant is selected over the ‘bits(·)’ version. The
shift operations are:

24

~

left-shift << bits(n)× nat → bits(n)
bits(n)× bits(n) → bits(n)

right-shift (u) >>+ bits(n)× nat → bits(n)
bits(n)× bits(n) → bits(n)

right-shift (s) >> bits(n)× nat → bits(n)
bits(n)× bits(n) → bits(n)

rotate left #<< bits(n)× nat → bits(n)
bits(n)× bits(n) → bits(n)

rotate right #>> bits(n)× nat → bits(n)
bits(n)× bits(n) → bits(n)

A number of operations are undefined depending on the types of their domain and range.
This is detailed in the following table:

Operation Undefined when

ZeroExtend(x`n)`m m < n
SignExtend(x`n)`m m < n
(x`m)<p> m ≤ p
(x`m)<h:l>`n n ̸= h+ 1− l ∨ h < l ∨m ≤ h
((x'm) : (y'n))`p p ̸= m+ n
((x`m) ^ n)`p p ̸= m · n (which covers n = 0)

The type checker will fail when these conditions are obviously violated. Alternatively, the inter-
preter may raise a runtime error when these conditions are not met.

As before the expressions ‘Log2(0)’, ‘x quot 0’, ‘x rem 0’, ‘x div 0’ and ‘x mod 0’ are all
undefined.

A.6 Bit-strings
Various bit-string operation are defined over the type ‘bool list’. These are listed below:

bit value · <·> bool list× nat → bool
bit field · <·:·> bool list× nat× nat → bool list
concatenation : bool list× bool list → bool list
duplication ^ bool list× nat → bool list
addition + bool list× bool list → bool list
bitwise conjunction && bool list× bool list → bool list
bitwise disjunction || bool list× bool list → bool list
bitwise exclusive-or ?? bool list× bool list → bool list
left-shift << bool list× nat → bool list
right-shift >>+ bool list× nat → bool list
rotate-right #>> bool list× nat → bool list

The bit value operation gives the truth value of a bit-string at a given bit position, for example:

‘0s1101<0>’ = ‘true’, ‘0s1101<1>’ = ‘false’, ‘0s1101<2>’ = ‘true’,
‘0s1101<3>’ = ‘true’, ‘0s1101<4>’ = ‘false’, ‘0s1101<5>’ = ‘false’.

25

<<
>>+
>>
#<<
#>>
^
<<
>>+
#>>

The least-significant bit (position zero) occurs to the right of the bit-string. The bit value oper-
ation gives ‘false’ when the bit position is greater than the size of the bit-string.

The bit field operation extracts a range of bits from a bit-string. For example:

‘0s1101<3:1>’ = ‘0s110’ and ‘0s1101<5:2>’ = ‘0s0011’ .

In the bit-string expression x<h:l> the size of the result is always h + 1 − l and the result is
undefined when h < l.

Bit-string addition does not require the arguments to be of the same size and it gives a
non-truncated result. For example,

‘0s101 + 0s1’ = ‘0s110’ and ‘0s101 + 0s11’ = ‘0s1000’ .

The operation << performs a left-shift; for example, ‘0s1101 << 2’ = ‘0s110100’. The oper-
ation ‘:’ is bit-string concatenation and ‘^’ is duplication; for example:

‘0s101 : 0s11’ = ‘0s10111’ and ‘0s101 ^ 3’ = ‘0s101101101’ .

Regular list operations work as one would expect over bit-strings; for example, ‘Head (0s101)’
is a valid expression with value ‘true’.

A.7 Characters and Strings
The following built-in functions are available for characters and strings:

is alphabetic IsAlpha char → bool
is alpha-numeric IsAlphaNum char → bool
is decimal digit IsDigit char → bool
is hexadecimal digit IsHexDigit char → bool
is lowercase IsLower char → bool
is uppercase IsUpper char → bool
parse binary FromBinString string → num option
parse decimal FromDecString string → num option
parse hexadecimal FromHexString string → num option
convert to lowercase ToLower string → string
convert to uppercase ToUpper string → string

The following string operations are useful for parsing:

split from the left splitl (char → bool) × string → string × string
split from the right splitr (char → bool) × string → string × string
split into fields fields (char → bool) × string → string list
split into tokens tokens (char → bool) × string → string list

These are based on the SML functions Substring.splitl, Substring.splitr, String.fields
and String.tokens. Character predicates are declared using special syntax; for example, the
expression:

splitl space or hexdigit and not in set {#"a", #"f"} (" 12bcab")

gives the result ‘(" 12bc", "ab")’.

26

<<
<<
^

A.8 Floating-point
The L3 language does not provide specialised types for representing floating-point numbers.
However, 32-bit (single precision) and 64-bit (double precision) bit-vector values can be treated
as floating-point numbers; the following IEEE compliant encoding formats are assumed:

31 30 23 22 0

s e m
1 8 23

63 62 52 51 0

s e m
1 11 52

Here ‘s’ is the sign bit (set to ‘1’ for negative numbers), ‘e’ is a biased exponent value and ‘m’ is the
significand. The following constants and operations are available (where ‘fp’ stands for bits(32)
or bits(64), depending on the name of the operation):

rounding modes roundTiesToEven,
roundTowardPositive,
roundTowardNegative,
roundTowardZero

ieee_rounding

flags (record) DivideByZero, InvalidOp,
Overflow, Precision,
Underflow

ieee_flags→bool

comparison values FP_LT, FP_EQ, FP_GT, FP_UN ieee_compare

convert format FP32_ToFP64 fp32→fp64
convert format FP64_ToFP32 ieee_rounding× fp64→fp32
convert format FP64_ToFP32_ ieee_rounding× fp64→

ieee_flags× fp32
from integer FP{32|64}_FromInt ieee_rounding× int→fp
to integer FP{32|64}_ToInt ieee_rounding× fp→int option
from string FP{32|64} string→fp

negative zero FP{32|64}_NegZero fp
positive zero FP{32|64}_PosZero fp
negative infinity FP{32|64}_NegInf fp
positive infinity FP{32|64}_PosInf fp
a quiet NaN FP{32|64}_qNan fp
a signalling NaN FP{32|64}_sNan fp

is integral FP{32|64}_IsIntegral fp→bool
is finite FP{32|64}_IsFinite fp→bool
is NaN FP{32|64}_IsNan fp→bool
is signalling NaN FP{32|64}_IsSignallingNan fp→bool
is normal FP{32|64}_IsNormal fp→bool
is sub-normal FP{32|64}_IsSubnormal fp→bool
is zero FP{32|64}_IsZero fp→bool

27

comparison FP{32|64}_Compare fp× fp→ieee_compare
equality FP{32|64}_Equal fp× fp→bool
less than FP{32|64}_LessThan fp× fp→bool
less than or equal FP{32|64}_LessEqual fp× fp→bool
greater than FP{32|64}_GreaterThan fp× fp→bool
greater than or equal FP{32|64}_GreaterEqual fp× fp→bool

absolute FP{32|64}_Abs fp→fp
negation FP{32|64}_Neg fp→fp
square root FP{32|64}_Sqrt ieee_rounding× fp→fp
(with flags) FP{32|64}_Sqrt_ ieee_rounding× fp→ieee_flags× fp
addition FP{32|64}_Add ieee_rounding× fp× fp→fp
(with flags) FP{32|64}_Add_ ieee_rounding× fp× fp→

ieee_flags× fp
subtraction FP{32|64}_Sub ieee_rounding× fp× fp→fp
(with flags) FP{32|64}_Sub_ ieee_rounding× fp× fp→

ieee_flags× fp
multiplication FP{32|64}_Mul ieee_rounding× fp× fp→fp
(with flags) FP{32|64}_Mul_ ieee_rounding× fp× fp→

ieee_flags× fp
fused multiply-add FP{32|64}_MulAdd ieee_rounding× fp× fp× fp→fp
(with flags) FP{32|64}_MulAdd_ ieee_rounding× fp× fp× fp→

ieee_flags× fp
fused multiply-sub FP{32|64}_MulSub ieee_rounding× fp× fp× fp→fp
(with flags) FP{32|64}_MulSub_ ieee_rounding× fp× fp× fp→

ieee_flags× fp
division FP{32|64}_Div ieee_rounding× fp× fp→fp
(with flags) FP{32|64}_Div_ ieee_rounding× fp× fp→

ieee_flags× fp

The L3 interpreter supports evaluation for 32-bit and 64-bit floating-point expressions but only
when running on an x86 machine that supports SSE2 extensions (Pentium 4 and later). The
fused multiply-add/sub operations can only be interpreted on machines supporting the FMA
extension, which came in with the 4th generation (Haswell) Intel processors. These restrictions
also apply to any Standard ML code that is generated by L3.

The IEEE 754 standard permits a number of different ways to flag underflow. L3 predomi-
nantly supports the x86 interpretation, which detects underflow after rounding. However, when
exporting to HOL4 it is possible to choose detection before rounding which, for example, is
suited to ARM instruction set models.

A.9 Miscellaneous operations
The following operations are available:

pair constructor , α× β → α× β
first of pair Fst α× β → α
second of pair Snd α× β → β

casting [·] α̂ → β̂
initialise a map InitMap α → (β→α)

28

option constructor Some α→α option
option projection ValOf α option → α
option test IsSome α option → bool

set membership in α×α set → bool
set non-membership notin α×α set → bool
set insertion insert α×α set →α set
set union Union α set×α set →α set
set intersection Intersect α set×α set →α set
set difference Difference α set×α set →α set
set subset test IsSubset α set×α set → bool
set cardinality Cardinality α set→ nat
set from a list SetOfList α list →α set

empty list Nil α list
list constructor Cons, @ α×α list → α list
list head Head α list → α
list tail Tail α list → α list
list length Length α list → nat
list concatenation : α list×α list → α list
list flatten Concat α list list → α list
list element Element nat×α list → α
list prefix Take nat×α list → α list
list drop prefix Drop nat×α list → α list
list pad left PadLeft α× nat×α list → α list
list pad right PadRight α× nat×α list → α list
list update Update α× nat×α list → α list
list difference Remove α list×α list → α list
list intersection RemoveExcept α list×α list → α list
list without duplicates RemoveDuplicates α list→ α list
list membership IsMember α×α list → bool
list member position IndexOf α×α list → nat option

Sets are only defined over equality types, see Appendix A.2. The casting map is defined over
cast-able types (as represented by the polymorphic type variables α̂ and β̂): these are the primitive
types (with the exception of ‘unit’) and user defined enumerated types. Assume ‘Enum’ and ‘Enum2’
are declared with:

construct Enum { One, Two, Three }
construct Enum2 { Four, Five, Six, Seven }

The cast operations are described in Tables 1 to 7.

29

Table 1: Cast to ‘bool’

From Operation Examples

bool identity ‘[true]::bool’ = ‘true’
string parse bool ‘["true"]::bool’ = ‘true’

‘["false"]::bool’ = ‘false’
otherwise undefined

nat is not zero ‘[0n3]::bool’ = ‘true’
‘[0n0]::bool’ = ‘false’

int is not zero ‘[-0i1]::bool’ = ‘"true"’
‘[0i0]::bool’ = ‘false’

bool list is not zero ‘[0s11]::bool’ = ‘true’
‘[0s0]::bool’ = ‘false’

bits(·) is not zero ‘[3`3]::bool’ = ‘true’
‘[0`3]::bool’ = ‘false’

Enum is not the first element ‘[One]::bool’ = ‘false’
‘[Two]::bool’ = ‘true’

Table 2: Cast to ‘string’

From Operation Examples

bool name ‘[true]::string’ = ‘"true"’
string identity ‘["hello"]::string’ = ‘"hello"’
nat decimal ‘[0n3]::string’ = ‘"3"’
int signed decimal ‘[-0i1]::string’ = ‘"~1"’
bool list binary ‘[0s11]::string’ = ‘"11"’
bits(·) unsigned hexadecimal ‘[139`8]::string’ = ‘"8B"’
Enum name ‘[One]::string’ = ‘"One"’

30

~

Table 3: Cast to ‘nat’

From Operation Examples

bool bit value ‘[false]::nat’ = ‘0n0’
‘[true]::nat’ = ‘0n1’

string parse decimal ‘["123"]::nat’ = ‘0n123’
‘[""]::nat’ is undefined
‘["-1"]::nat’ is undefined
‘["hello"]::nat’ is undefined

nat identity ‘[0n123]::nat’ = ‘0n123’
int value ‘[0i123]::nat’ = ‘0n123’

‘[-0i1]::nat’ is undefined
bool list value ‘[0s11]::nat’ = ‘0n3’
bits(·) unsigned value ‘[139`8]::nat’ = ‘0n139’
Enum enumerate (count from zero) ‘[One]::nat’ = ‘0n0’

‘[Two]::nat’ = ‘0n1’

Table 4: Cast to ‘int’

From Operation Examples

bool bit value ‘[false]::int’ = ‘0i0’
‘[true]::int’ = ‘0i1’

string parse decimal ‘["123"]::int’ = ‘0i123’
‘["-123"]::int’ = ‘-0i123’
‘["~123"]::int’ = ‘-0i123’
‘[""]::int’ is undefined
‘["hello"]::int’ is undefined

nat value ‘[0n123]::int’ = ‘0i123’
int identity ‘[0i123]::int’ = ‘0i123’
bool list value ‘[0s11]::int’ = ‘0i3’
bits(·) signed value ‘[123`8]::int’ = ‘0i123’

‘[130`8]::int’ = ‘-0i126’
Enum enumerate ‘[One]::int’ = ‘0i0’

31

~

Table 5: Cast to ‘bit-string’

From Operation Examples

bool bit value ‘[false]::bool list’ = ‘0s0’
‘[true]::bool list’ = ‘0s1’

string parse binary ‘["101"]::bool list’ = ‘0s101’
‘["123"]::bool list’ is undefined

nat value ‘[0n123]::bool list’ = ‘0s1111011’
int value ‘[0i123]::bool list’ = ‘0s1111011’

‘[-0i1]::bool list’ is undefined
bool list identity ‘[0s11]::bool list’ = ‘0s11’
bits(·) unsigned value ‘[123`8]::bool list’ = ‘0s01111011’
Enum enumerate ‘[One]::bool list’ = ‘0s0’

Table 6: Cast to ‘bits(n)’

From Operation Examples

bool bit value ‘[false]`8’ = ‘0x0`8’
‘[true]`8’ = ‘0x1`8’

string parse hexadecimal ‘["8B"]`8’ = ‘0x8B`8’
‘["-A"]`8’ = ‘0xF6`8’
‘["100"]`8’ is undefined (too big)

nat unsigned value (mod 2n) ‘[0n123]`8’ = ‘0x7B`8’
‘[0n256]`8’ = ‘0x0`8’

int signed value (mod 2n) ‘[0i123]`8’ = ‘0x7B`8’
‘[0i256]`8’ = ‘0x0`8’
‘[-0i1]`8’ = ‘0xFF`8’
‘[-0i133]`8’ = ‘0x7B`8’

bool list unsigned value (mod 2n) ‘[0s1111]`8’ = ‘0xF`8’
‘[0s1000000001]`8’ = ‘0x1`8’

bits(p) identity / zero extend (p ≤ n) ‘[0x81`8]`10’ = ‘0x81`10’
truncate (n < p) ‘[0xFF0`12]`8’ = ‘0xF0`8’

Enum enumerate ‘[One]`8’ = ‘0s0’
‘[Three]`1’ is undefined (too big)

32

Table 7: Cast to ‘Enum’

From Operation Examples

bool type error
string parse ‘["One"]::Enum’ = ‘One’

‘["hello"]::Enum’ is undefined
nat select ‘[0n1]::Enum’ = ‘Two’

‘[0n3]::Enum’ is undefined
int select ‘[0i1]::Enum’ = ‘Two’

‘[0i3]::Enum’ is undefined
‘[-0i1]::Enum’ is undefined

bool list select ‘[0s1]`8’ = ‘Two’
‘[0s11]::Enum’ is undefined

bits(·) select ‘[1`8]::Enum’ = ‘Two’
‘[3`8]::Enum’ is undefined

Enum identity ‘[One]::Enum’ = ‘One’
Enum2 select ‘[Four]::Enum’ = ‘One’

‘[Seven]::Enum’ is undefined

33

B Syntax
Reserved words
The names of all primitive types, operators and constants are reserved, see Appendix A. Other
reserved words are:

assign case clear component construct declare define do else exception for
foreach if list match nothing pattern patterns record register return set then
type var when RAO! RAZ! UNK! UNKNOWN

Comments
Inline comments start with ‘--’. Block comments are delimited by ‘{-’ and ‘-}’, and can be
nested. All commented code is ignored (not parsed).

Number literals
In the following, no white-space is permitted.

⟨bin⟩ ::= ‘0’ | ‘1’

⟨dec⟩ ::= ⟨bin⟩ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’

⟨hex⟩ ::= ⟨dec⟩ | ‘a’ | ‘b’ | ‘c’ | ‘d’ | ‘e’ | ‘f’ | ‘A’ | ‘B’ | ‘C’ | ‘D’ | ‘E’ | ‘F’

⟨binary⟩ ::= ⟨bin⟩ | ⟨bin⟩ ⟨binary⟩ | ⟨bin⟩ ‘_’ ⟨binary⟩

⟨decimal⟩ ::= ⟨dec⟩ | ⟨dec⟩ ⟨decimal⟩ | ⟨dec⟩ ‘_’ ⟨decimal⟩

⟨hexadecimal⟩ ::= ⟨hex⟩ | ⟨hex⟩ ⟨hexadecimal⟩ | ⟨hex⟩ ‘_’ ⟨hexadecimal⟩

⟨number⟩ ::= ⟨decimal⟩ | ‘0b’ ⟨binary⟩ | ‘0d’ ⟨decimal⟩ | ‘0x’ ⟨hexadecimal⟩
| ‘0n’ ⟨decimal⟩ | ‘0nb’ ⟨binary⟩ | ‘0nd’ ⟨decimal⟩ | ‘0nx’ ⟨hexadecimal⟩

⟨numeric⟩ ::= ⟨number⟩
| ‘0i’ ⟨decimal⟩ | ‘0ib’ ⟨binary⟩ | ‘0id’ ⟨decimal⟩ | ‘0ix’ ⟨hexadecimal⟩
| ‘0s’ ⟨decimal⟩ | ‘0sb’ ⟨binary⟩ | ‘0sd’ ⟨decimal⟩ | ‘0sx’ ⟨hexadecimal⟩
| ‘0w’ ⟨decimal⟩ | ‘0wb’ ⟨binary⟩ | ‘0wd’ ⟨decimal⟩ | ‘0wx’ ⟨hexadecimal⟩

Identifiers
⟨alpha⟩ ::= ‘a’ .. ‘z’ | ‘A’ .. ‘Z’

⟨alphanum⟩ ::= ⟨alpha⟩ | ⟨dec⟩ | ‘_’

⟨alphanums⟩ ::= ⟨alphanum⟩ | ⟨alphanum⟩ ⟨alphanums⟩

⟨name⟩ ::= ⟨alpha⟩ | ⟨alpha⟩⟨alphanums⟩

34

Types
In the following, white-space is permitted.

⟨type⟩ ::= ⟨tuple-type⟩ | ⟨tuple-type⟩ ‘->’ ⟨tuple-type⟩

⟨tuple-type⟩ ::= ⟨base-type⟩ | ⟨base-type⟩ ‘*’ ⟨tuple-type⟩

⟨base-type⟩ ::= ‘unit’ | ‘bool’ | ‘string’ | ‘nat’ | ‘int’
| ‘bits’ ‘(’ ⟨bits-type⟩ ‘)’
| ⟨base-type⟩ ‘list’
| ⟨base-type⟩ ‘option’
| ⟨base-type⟩ ‘set’
| ⟨name⟩
| ‘(’ ⟨type⟩ ‘)’

⟨bits-type⟩ ::= ⟨name⟩ | ⟨number⟩

⟨annotation⟩ ::= ‘::’ ⟨type⟩ | ‘`’ ⟨bits-type⟩

⟨a-name⟩ ::= ⟨name⟩ ⟨annotation⟩

⟨opt-a-name⟩ ::= ⟨name⟩ | ⟨a-name⟩

Specifications
⟨specification⟩ ::= ⟨declaration⟩ | ⟨declaration⟩ ⟨specification⟩

⟨declaration⟩ ::= ⟨definition⟩
| ‘type’ ⟨name⟩ ‘=’ ⟨type⟩
| ‘construct’ ⟨name⟩ ‘{’ ⟨constructs⟩ ‘}’
| ‘record’ ⟨name⟩ ‘{’ ⟨arguments⟩ ‘}’
| ‘register’ ⟨a-name⟩ ‘{’ ⟨fields⟩ ‘}’
| ‘declare’ ⟨globals⟩
| ‘exception’ ⟨opt-a-name⟩
| ‘pattern’ ⟨hints⟩
| ‘clear’ ‘pattern’ ⟨name-list⟩
| ‘clear’ ‘patterns’

⟨constructs⟩ ::= ⟨opt-a-name⟩
| ⟨opt-a-name⟩ ⟨constructs⟩
| ⟨opt-a-name⟩ ‘,’ ⟨constructs⟩

⟨globals⟩ ::= ⟨a-name⟩ | ‘{’ ⟨arguments⟩ ‘}’

⟨arguments⟩ ::= ⟨a-name⟩
| ⟨a-name⟩ ⟨arguments⟩
| ⟨a-name⟩ ‘,’ ⟨arguments⟩

⟨hints⟩ ::= ⟨hint⟩ | ‘{’ ⟨hint-sequence⟩ ‘}’

⟨hint-sequence⟩ ::= ⟨hint⟩ | ⟨hint⟩ ⟨hint-sequence⟩ | ⟨hint⟩ ‘,’ ⟨hint-sequence⟩

35

⟨hint⟩ ::= ⟨names⟩ ⟨annotation⟩

⟨names⟩ ::= ⟨name⟩ | ⟨name⟩ ‘,’ ⟨names⟩ | ⟨name⟩ ⟨names⟩

⟨name-list⟩ ::= ⟨name⟩ | ⟨name⟩ ‘,’ ⟨name-list⟩

Definitions
⟨definition⟩ ::= ‘define’ ⟨define⟩

| ‘component’ ⟨component⟩
| ⟨function⟩

⟨define⟩ ::= ⟨ast⟩ ⟨define-sig⟩ ‘=’ ⟨block⟩

⟨ast⟩ ::= ⟨name⟩ | ⟨name⟩ ‘>’ ⟨ast⟩

⟨component⟩ ::= ⟨name⟩ ⟨component-sig⟩ ‘{’ ‘value’ ‘=’ ⟨block⟩ ‘assign’ ⟨name⟩ ‘=’ ⟨block⟩ ‘}’

⟨function⟩ ::= ⟨type⟩ ⟨name⟩ ⟨function-sig⟩ ‘=’ ⟨block⟩

⟨define-sig⟩ ::= ⟨single-constraint⟩
| ‘(’ ‘)’
| ‘(’ ‘)’ ⟨single-constraint⟩
| ‘(’ ⟨args⟩ ‘)’
| ‘(’ ⟨args⟩ ‘)’ ⟨single-constraint⟩

⟨function-sig⟩ ::= ⟨constraints⟩
| ‘(’ ‘)’
| ‘(’ ‘)’ ⟨constraints⟩
| ‘(’ ⟨args⟩ ‘)’
| ‘(’ ⟨args⟩ ‘)’ ⟨constraints⟩

⟨component-sig⟩ ::= ⟨type-constraint⟩
| ‘(’ ‘)’ ⟨type-constraint⟩
| ‘(’ ⟨args⟩ ‘)’ ⟨type-constraint⟩

⟨type-constraint⟩ ::= ‘::’ ⟨type⟩
| ‘::’ ⟨type⟩ ⟨constraints⟩

⟨args⟩ ::= ⟨a-name⟩ | ⟨a-name⟩ ‘,’ ⟨args⟩

Blocks and Statements
⟨block⟩ ::= ⟨statement⟩

| ‘{’ ⟨sequence⟩ ‘;’ ⟨return⟩ ‘}’
| ⟨return⟩

⟨statement⟩ ::= ‘{’ ⟨sequence⟩ ‘}’ | ⟨command⟩

⟨return⟩ ::= ‘return’ ⟨expression⟩ | ⟨expression⟩

⟨sequence⟩ ::= ⟨command⟩ | ⟨command⟩ ‘;’ ⟨sequence⟩

36

⟨command⟩ ::= ‘#’ ⟨name⟩
| ‘#’ ⟨name⟩ ⟨expression-literal⟩
| ⟨name⟩ ⟨expression-literal⟩
| ‘if’ ⟨expression⟩ ‘then’ ⟨block⟩ ‘else’ ⟨block⟩
| ‘when’ ⟨expression⟩ ‘do’ ⟨statement⟩
| ‘match’ ⟨expression⟩ ‘{’ ⟨cases⟩ ‘}’
| ‘for’ ⟨name⟩ ‘in’ ⟨expression⟩ ‘..’ ⟨expression⟩ ‘do’ ⟨statement⟩
| ‘foreach’ ⟨name⟩ ‘in’ ⟨expression⟩ ‘do’ ⟨statement⟩
| ‘nothing’
| ‘var’ ⟨name⟩
| ‘var’ ⟨name⟩ ‘=’ ⟨expression⟩
| ⟨reference⟩ ‘<-’ ⟨expression⟩
| ⟨tuple⟩ ‘=’ ⟨expression⟩

⟨tuple⟩ ::= ⟨tuple-literal⟩ | ⟨tuple-literal⟩ ‘,’ ⟨tuple⟩

⟨tuple-literal⟩ ::= ⟨tuple-lit⟩ | ⟨tuple-lit⟩ ⟨annotation⟩

⟨tuple-lit⟩ ::= ⟨name⟩ | ‘_’ | ‘(’ ⟨tuple⟩ ‘)’

⟨cases⟩ ::= ⟨case⟩ | ⟨case⟩ ⟨cases⟩

⟨case⟩ ::= ‘case’ ⟨patterns⟩ ‘=>’ ⟨block⟩

⟨patterns⟩ ::= ⟨pattern⟩ | ⟨pattern⟩ ‘or’ ⟨patterns⟩

Expressions
⟨expression⟩ ::= ⟨expr⟩ | ⟨expr⟩ ⟨binary-op⟩ ⟨expression⟩

⟨expr⟩ ::= ⟨clause⟩ | ⟨clause⟩ ⟨annotation⟩

⟨binary-op⟩ ::= ‘,’ | ‘or’ | ‘and’ | ‘==’ | ‘!=’ | ‘<>’ | ‘<’ | ‘<+’ | ‘<=’ | ‘<=+’ | ‘>’ | ‘>+’ | ‘>=’ | ‘>=+’ |
‘in’ | ‘notin’ | ‘insert’ | ‘@’ | ‘:’ | ‘-’ | ‘+’ | ‘||’ | ‘??’ | ‘*’ | ‘quot’ | ‘rem’ | ‘div’
| ‘mod’ | ‘&&’ | ‘<<’ | ‘>>’ | ‘>>+’ | ‘#>>’ | ‘#<<’ | ‘^’ | ‘**’

⟨clause⟩ ::= ⟨unary-op⟩ ⟨expression⟩
| ⟨reference⟩
| ⟨expression-literal⟩
| ‘#’ ⟨name⟩
| ‘#’ ⟨name⟩ ⟨expression-literal⟩
| ‘if’ ⟨expression⟩ ‘then’ ⟨expression⟩ ‘else’ ⟨expression⟩
| ‘match’ ⟨expression⟩ ‘{’ ⟨expression-cases⟩ ‘}’
| ‘set’ ‘{’ ⟨expression⟩ ‘}’
| ‘list’ ‘{’ ⟨expression⟩ ‘}’

⟨unary-op⟩ ::= ‘not’ | ‘!’ | ‘-’ | ‘~’

⟨expression-literal⟩ ::= ‘(’ ‘)’
| ‘(’ ⟨expression⟩ ‘)’
| ‘[’ ⟨expression⟩ ‘]’

37

<<
>>
>>+
#>>
#<<
~

| ‘'’ ⟨binary⟩ ‘'’
| ‘"’ ⟨string⟩ ‘"’
| ‘#"’ ⟨character⟩ ‘"’
| ⟨numeric⟩ | ‘true’ | ‘false’ | ‘UNKNOWN’

⟨expression-cases⟩ ::= ⟨expression-case⟩ | ⟨expression-case⟩ ⟨expression-cases⟩

⟨expression-case⟩ ::= ‘case’ ⟨patterns⟩ ‘=>’ ⟨expression⟩

⟨reference⟩ ::= ‘&’ ⟨entity⟩
| ‘&’ ⟨entity⟩ ⟨index⟩
| ⟨dotted⟩
| ⟨dotted⟩ ⟨index⟩
| ⟨dotted⟩ ‘.’ ‘&’ ⟨entity⟩
| ⟨dotted⟩ ‘.’ ‘&’ ⟨entity⟩ ⟨index⟩

⟨dotted⟩ ::= ⟨entity⟩ | ⟨entity⟩ ‘.’ ⟨dotted⟩

⟨entity⟩ ::= ⟨name⟩
| ⟨name⟩ ‘(’ ‘)’
| ⟨name⟩ ‘(’ ⟨expression⟩ ‘)’

⟨index⟩ ::= ‘<’ ⟨expression⟩ ‘>’

Patterns
⟨pattern⟩ ::= ⟨pat⟩ | ⟨pat⟩ ‘,’ ⟨pattern⟩ | ⟨pat⟩ ‘@’ ⟨pattern⟩

⟨pat⟩ ::= ⟨pattern-literal⟩ | ⟨pattern-literal⟩ ⟨annotation⟩

⟨pattern-literal⟩ ::= ⟨name⟩ ‘(’ ‘)’
| ⟨name⟩ ‘(’ ⟨pattern⟩ ‘)’
| ⟨pattern-lit⟩
| ⟨bit-pattern⟩
| ‘-’ ⟨number⟩
| ‘(’ ⟨pattern⟩ ‘)’

⟨pattern-lit⟩ ::= ⟨name⟩ | ⟨number⟩ | ‘_’ | ‘true’ | ‘false’ | ‘UNKNOWN’

Bit patterns
⟨bit-pattern⟩ ::= ‘'’ ⟨bit-pat⟩ ‘'’

⟨bit-pat⟩ ::= ⟨bit-pattern-lit⟩
| ⟨bit-pattern-lit⟩ ⟨bit-pat⟩
| ⟨bit-pattern-lit⟩ ‘:’ ⟨bit-pat⟩

⟨bit-pattern-lit⟩ ::= ⟨pattern-lit⟩
| ⟨pattern-lit⟩ ‘`’ ⟨bits-type⟩
| ‘(’ ⟨binary⟩ ‘)’

38

Constraints
⟨constraints⟩ ::= ‘with’ ⟨constraint-list⟩

⟨single-constraint⟩ ::= ‘with’ ⟨name⟩ ‘in’ ⟨number-list⟩

⟨constraint-list⟩ ::= ⟨constraint⟩ | ⟨constraint⟩ ‘and’ ⟨constraint-list⟩

⟨constraint⟩ ::= ⟨name⟩ ‘in’ ⟨number-set⟩ | ⟨name⟩ ⟨ordering⟩ ⟨number⟩

⟨ordering⟩ ::= ‘<’ | ‘>’ | ‘<=’ | ‘>=’

⟨number-list⟩ ::= ⟨number⟩ | ⟨number⟩ ‘,’ ⟨number-list⟩

⟨number-set⟩ ::= ⟨range⟩ | ⟨range⟩ ‘,’ ⟨number-set⟩

⟨range⟩ ::= ⟨number⟩ | ⟨number⟩ ‘-’ ⟨number⟩ | ⟨number⟩ ‘...’

Register specifications
⟨fields⟩ ::= ⟨field⟩ | ⟨field⟩ ⟨fields⟩ | ⟨field⟩ ‘,’ ⟨fields⟩

⟨field⟩ ::= ⟨bit-ranges⟩ ‘:’ ⟨field-name⟩

⟨bit-ranges⟩ ::= ⟨bit-range⟩ | ⟨bit-range⟩ ‘,’ ⟨bit-ranges⟩

⟨bit-range⟩ ::= ⟨number⟩ | ⟨number⟩ ‘-’ ⟨number⟩

⟨field-name⟩ ::= ‘UNK!’ | ‘RAZ!’ | ‘RAO!’ | ⟨name⟩

39

	Language Features
	Commenting
	Primitive Types
	Literals
	Global State
	Tuples
	Maps
	Sum Types
	Records
	Registers
	Polymorphic Types
	Statements and Expressions
	Defining Constants and Operations
	Components
	Recursion
	Instruction Set Definitions

	Tutorial
	Primitive Types and Operations
	Unit
	Bool
	Nat
	Int
	Bit-vectors
	Bit-strings
	Characters and Strings
	Floating-point
	Miscellaneous operations

	Syntax

