
Chapter 1
Specification and Verification of ARM Hardware
and Software

Anthony C. J. Fox, Michael J. C. Gordon, and Magnus O. Myreen

Abstract The ARM verification project started in 2000 with the aim of seeing
whether existing mechanised formal specification and verification methods could be
applied to a commercial off-the-shelf processor. After succeeding in formally veri-
fying that a model of the ARM6 microarchitecture correctly implemented a model
of the ARMv3 instruction set architecture (ISA), the project gradually moved away
from processor verification to software verification. Models of relatively recent ISAs
were specified and a code verification methodology is being developed, where the
semantics of code execution is given by the processor ISA model. The long term
goal, similar to that of the pioneering CLI stack project, is to create systems on bare
metal with as much as possible formally modelled and verified. The current case
study is implementing a simple Lisp machine in ARM machine code. This chapter
is an overview of the Cambridge ARM project together with some technical high-
lights that have emerged from the research.

1.1 Introduction and overview

This introductory section provides a high level summary of the history and evolv-
ing goals of the ARM verification project. Section 1.2, by Anthony Fox, is a more
detailed look into the modelling and verification of ARM processors. Section 1.3,
by Magnus Myreen, is more detailed than the others and introduces a new method
for creating trustworthy software implementations directly on bare metal. This ap-
proach uses the Fox processor model for the semantics of a machine code program-
ming logic that borrows some ideas from separation logic.

In the late 1990s Graham Birtwistle, at the University of Leeds, was investigating
the use of the Standard ML (SML) functional programming language for modelling
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ARM processors. He approached Mike Gordon, a longtime collaborator, about the
possibility of a joint project to extend the Leeds modelling work to formal verifica-
tion. Birtwistle and Gordon, together with contacts at ARM Ltd in Cambridge, sub-
mitted a research proposal to the UK Engineering and Physical Sciences Research
Council (EPSRC) entitled “Formal Specification and Verification of ARM6”. This
application was initially turned down on the grounds that the ARM6 processor was
obsolete. However, following a strong letter from ARM pointing out that they could
not place more modern designs in the public domain, the project was funded on
resubmission.

The EPSRC project supported two PhD students at Leeds: Dominic Pajak and
Daniel Schostak, and a postdoctoral researcher at Cambridge: Anthony Fox. Pajak
and Schostak developed SML models of the ARMv3 ISA and ARM6 microarchi-
tecture, respectively. They both had summer internships at ARM in Cambridge, and
this enabled them to talk to ARM engineers to find out details, especially concerning
the ARM6 microarchitecture, that were not easily available. Fox took details from
Pajack and Schostak’s models, and public ARM documentation, and developed for-
mal specifications in higher order logic (HOL) suitable for formal verification. An
overview of this work is in Section 1.2. Pajak and Schostak subsequently completed
their PhDs at Leeds and took jobs at ARM in Cambridge.

The formal verification that a model of the ARM6 microarchitecture corre-
sponded to the ARMv3 ISA was completed by Fox within a couple of years (much
of which were spent developing general proof infrastructure for the HOL4 proof
assistant, which was used for the verification). This demonstrated proof-of-concept
for the verification of a simple commercial off-the-shelf (COTS) processor. More
complex processors, like those implementing the x86 ISA, are widely considered
to be too complex for complete formal verification, although very impressive work
has been done by Intel, AMD and VIA (Centaur) on the formal verification of parts
of implementations x86 processors and by Rockwell Collins on the AAMP7G spe-
cialised processor [15]. Many critical systems use simple processors comparable to
ARM, and the Leeds-Cambridge project showed that the complete formal verifica-
tion of these is within the current state-of-the-art.

Following the successful first project, Gordon and Fox applied for continued sup-
port and eventually got a new EPSRC grant entitled “Formal Specification and Ver-
ification of ARM-based Systems”. The aim here was to go beyond the processor
to surrounding system components and accurately model things like input/output,
coprocessors, bus protocols etc. with the goal of conducting case studies involving
these. We also proposed to upgrade our formal ISA models to match more recent
versions of ARM. It was decided not to upgrade the microarchitecture verification
for two reasons: (i) we would be unable to get access to more recent designs (pro-
cessor implementations are confidential ARM IP, but ISA specifications are largely
in the public domain) and (ii) we felt that re-verifying new implementations would
be a lot of detailed work without much research value. Current ARM ISAs are a
lot more complex than ARM6, having, for example, instructions for floating point,
vector processing, virtual addressing etc. Current ARM microarchitecture imple-
mentations have complex pipelines that are much more complicated than that used



1 Specification and Verification of ARM Hardware and Software 3

in ARM6; this makes the relationship between microarchitecture and ISA compu-
tations harder to relate formally. The concepts needed for verifying complex (e.g.
superscalar) implementations are reasonably well understood (it was the topic of
Fox’s PhD and several academic projects [3, 27]) but the actual verifications are
significantly more work than those needed for the ARM6 three-stage pipeline. De-
spite this increased complexity, our feeling is that with modern theorem proving
infrastructure (including that developed for the ARM6 verification), the complete
formal verification of a modern ARM implementation would be similar in kind to
the ARM6 proof. The ARM9 microarchitecture, which is still widely used in mobile
devices, would be relatively straightforward, but the latest Cortex designs would be
very much more effort (e.g. at least 10× more). The academic research benefits of
doing such microarchitecture verifications (e.g. the potential for publication) would
not be commensurate with the effort required.

The second EPSRC project was significantly more challenging and the work is
still continuing even though the end date of the project has passed. This is possible
because the initial ARM research attracted some positive attention and we were of-
fered additional funding from a US Government agency to continue the work and to
extend it to explore high assurance cryptographic implementations. We were joined
in this work by Konrad Slind and students at Utah, who concentrated on formal
compilation of higher order logic specifications directly to a code representation
close to ARM assembler. This is described in Slind’s chapter in this book, so we
will not say more here. At Cambridge, Joe Hurd joined the project to work on for-
malising the mathematics underlying elliptic curve cryptography (ECC). Our goal
was to ensure, by machine checked formal proof, that ARM machine code, with a
semantics provided by a high-fidelity processor model, correctly implemented ECC
algorithms that were specified using the mathematical concepts of elliptic curves.
To this end Hurd developed HOL formalisations of the textbook level mathemat-
ical theory underlying ECC in the version of higher order logic supported by the
HOL4 system [18, 19]. This lead to difficult proof challenges, such as mechanically
proving the associativity of addition on elliptic curves [30].

In parallel with Hurd’s investigation of elliptic curve mathematics, Magnus
Myreen, then a PhD student at Cambridge, was developing a method of directly
verifying ARM assembler. He verified example ARM code implementing some of
the operations needed for ECC (e.g. Montgomery multiplication). The overall flow
we envisaged was:

1. start with the textbook level mathematical specifications of ECC applications in
HOL (Hurd);

2. use a proof-producing compiler to translate the HOL specifications to ARM as-
sembler (Slind);

3. link compiled ARM code to verified runtime code (Myreen).

Although significant progress has been made on all three of these steps we have still
(2009) to join everything up into a seamless flow.

One issue that arose as we upgraded to current ARM ISA specifications was the
challenge of accurately modelling the communication between an ARM CPU and
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its environment, which might include a variety of memories, coprocessors etc. This
impacts especially on systems code (see Point 3 above). As described in Section 1.2,
the current ARM model separates memory and coprocessors from the main CPU,
reflecting how systems are configured. We thus represent an ARM system as a struc-
ture containing separately modelled CPUs, various memories and other hardware.
An executable model – i.e. a next-state function – is derived by deduction from such
a system structure, and it is this that provides the semantics of code. Since the ARM
ISA model is complex, the first step in deriving verification infrastructure is to de-
rive higher level rules for reasoning about code that hides the details of the derived
next-state function from the verifier. The abstraction methods used for this are de-
scribed in Myreen’s Section 1.3 below. It turns out that these methods can also be
used to validate synthesis from low-level HOL, which provides a way of linking
the output of Slind’s compiler to the Fox processor model. This is also outlined in
Section 1.3.

1.2 Specification and verification of ARM architectures

1.2.1 The Swansea methodology

Before coming to work at the University of Cambridge Computer Lab, Anthony
Fox completed his PhD at the computer science department of the University of
Wales, Swansea. His supervisor, Neal Harman, and the then head of the department,
John Tucker, had written a series of papers examining algebraic correctness models
for formally verifying computer hardware. For example, this included examining
Mike Gordon’s micro-programmed case study, see [12, 16]. Fox took Harman and
Tucker’s work further, adapting their approach to cover pipelined and superscalar
micro-architectures. The key features of the Swansea approach are:

• Modelling systems at identified levels of abstraction, with particular attention
given to formally defining precise classes of data and temporal abstraction.1

Correctness is expressed as a commutativity statement that formally relates two
abstraction levels.

• When establishing the correctness of microprocessor designs, two key levels are
considered: the programmer’s model (PM) level and the abstract circuit (AC)
level.

• Formal modelling is based on the use of equational specification, defining the
operational semantics for a given system at established levels of abstraction. In
particular, primitive recursion is the principle definition mechanism. This means
that the formal specifications can be run or symbolically evaluated. Systems with
and without I/O were considered.

1 For example, the class of temporal abstraction maps required for superscalar designs is necessar-
ily more general than that needed for conventional pipelined processors.
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• A verification approach based on the use of a series of one-step theorems was de-
veloped (not to be confused with the single-step theorems in this chapter). This
provides a way to verify systems by principally using case-splitting and equa-
tional term-rewriting. That is to say, without the need to carry out an explicit
temporal induction or to define top-level invariant predicates. Instead, initialisa-
tion functions are used to specify the reachable state-space.

• The approach was designed to be tool neutral, enabling it to be implemented by
a wide variety of proof assistants.

In Fox’s thesis, a toy architecture with a pipelined implementation was defined,
and a pen-and-paper proof of correctness was also presented, see [4]. A superscalar
implementation was also defined, together with a formal statement of correctness.2

1.2.2 Starting at Cambridge

In the latter half of 2000, Fox moved to Cambridge to start working on the ARM6
project. Work had already begun at Leeds, however their ARM6 model had not been
completed yet. This meant that Fox, who had no previous experience in using theo-
rem provers, could gradually start learning HOL4 (then at version Taupo-4). Getting
to know HOL can be challenging but fortunately he shared an office with Michael
Norrish and there were various other HOL gurus around, including Konrad Slind.
As an initial project, the Swansea approach was formalized in HOL. This involved:
defining predicates that characterised the various classes of state systems and ab-
straction maps (for example, state-dependent immersions); formalizing the defini-
tion of correctness (one general enough to cover conventional pipelined processors);
and proving the 1-step theorems. Then the framework was given a test run with the
formal verification of a tiny microprogrammed CPU, see [5]. This was followed by
the formal verification of the pipelined design from Fox’s thesis.3

1.2.3 Modelling the ARM instruction set architecture

Work on specifying the ARM instruction set architecture (ISA) in HOL began in
2001, see [6]. In this context, the ISA is taken to correspond with the assembly pro-
grammer’s view of an architecture. In general, programmers have access to a fixed
set of registers (contained in a CPU), and to a much larger main memory – this is
usually connected to the processor via a memory bus.4 To write code, the assembly

2 At the time, a pen-and-paper proof of correctness was not feasible/attempted for the superscalar
design. Since then some bugs have been identified.
3 A minor bug was found in the pen-and-paper proof.
4 In practice, memory may be implemented with a series of caches, firmware, RAM and sometimes
with virtual memory e.g. a hard disk or a solid-state drive (SSD). However, memory details are
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programmer has at their disposal a set of low-level instructions – these all update
the registers and memory in various precisely defined ways. For example, typically
there will be a set of data processing instructions, which use an arithmetic logic unit
(ALU) to perform primitive operations – such as addition, multiplication or bitwise
logic – on registers.5 There will also be a set of memory access instructions for load-
ing data from memory to registers and for storing registers to memory. The overall
set of instruction is often extended with the introduction of new architecture gener-
ations. The number and variety of registers and instructions can vary considerably
across platforms but there will normally be at least a handful of registers and few
dozen or so instructions. Instructions are encoded as a sequence of bits (machine
code) to be stored in the main memory. In the x86 architecture instructions have a
variable length6 but with the ARM architecture all instructions are 32 bits long.

The official descriptions of ISAs need to be relatively precise. This is invariably
achieved through the use of pseudo-code and in some cases the descriptions are
semi-formal. To define an operational semantics for the ARM architecture in HOL,
Fox used the specifications produced by Birtwistle’s group at Leeds, in conjunction
with Steve Furber’s book [10] and the official ARM610 data sheet. The objective
was to accurately declare a type S, corresponding with the programmer’s model
state space (registers and memory), and to define a next state function next : S→ S
that specifies the operational semantics of the ARM instructions i.e. the effect of
the instructions on the registers and memory. Fortunately, HOL provides excellent
support for modelling systems in a functional style, thanks to its “type base” tools,7

and by virtue of Slind’s TFL environment, see [29]. The specification was structured
according to instruction classes i.e. groups of similar instructions were specified as
a whole. To begin with I/O was not considered, in particular, hardware interrupts
were not modelled.

1.2.3.1 The state space.

The ARM architecture provides sixteen user-accessible registers and a program sta-
tus register, each 32-bit words – some of these are then shadowed with versions that
are accessible only in privileged or system modes. These modes are used when run-
ning operating system and exception handling code. The main memory is effectively
an array of bytes with a 32-bit address space. Thus, the overall state space is:

S = (RName→ word32)× (word32→ word8)

invariably implementation dependent and are mostly hidden from the programmer. In some cases
the actual behaviour can be somewhat counter-intuitive, see [1].
5 In CISC architectures these instructions may address the memory as well as just registers.
6 This is mainly because the x86 architectures has its origins in 8-bit and 16-bit computing. Al-
though this variable instruction length can greatly complicate the hardware needed to decode in-
structions, it can give excellent code density. ARM added a set of 16-bit (Thumb) instructions in
order to improve code density.
7 It is possible to define and work with types in HOL that correspond with algebraic data types.
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where RName represents the complete set of register names e.g. r8 usr and CPSR.
Although HOL has good support for working with algebraic types, there was a slight
problem with regards to modelling machine words. At the time, HOL had a theory
of words developed by Wai Wong, see [31]; however, this theory was list based and
made heavy use of restricted quantifiers, with predicates used to restrict the scope
of a universal quantifiers.8 It was decided that this theory would be too cumbersome
to use in the context of the ARM6 verification effort, particularly with regards to
symbolic evaluation. This started the winding road to developing HOL’s current
theory of n-bit words, with the latest version using an idea from John Harrison (see
[17]) in order to get around the perceived need for restricted quantifiers.

1.2.4 Modelling the ARM6 micro-architecture

In 2002 the ARM6 micro-architecture was modelled in HOL, see [7], and in 2003 a
formal verification was completed, see [8]. The ARM6 microprocessor dates from
around 1994 and was widely deployed in a number of low-powered devices, such
as the Apple Newton PDA. The processor’s micro-architecture is relatively simple,
employing a 3-stage pipeline with fetch, decode and execute stages. As with other
commercial designs, details of the processor’s implementation are not in the public
domain. It was only through collaboration with ARM Ltd., and Daniel Schostak’s
internship there, that is was possible to develop the formal model. The ARM6 pro-
cessor is no longer in production, which was a factor in us gaining permission to
carry out this research. However, it is worth noting that the ARM9 (circa 2004, and
used in the Nokia N-Gage) is not a superscalar design and has a 5-stage pipeline.
It can be argued therefore that the verification of the ARM6 is still pertinent with
respect to some more modern designs.

Daniel Schostak produced a very detailed model of the ARM6 for his thesis,
see [28]. He only introduced a limited amount of abstraction, modelling the RTL
(register transfer level) with a two-phase clock model. A limited amount of data
abstraction was applied when producing the cycle accurate HOL model. One of the
most useful resources in achieving this was Schostak’s tabular style paper specifi-
cation.9 For example, his tabular description of the DIN latch (which stores input
from the data bus) is shown below.

8 HOL is based on simple type theory and does not directly support predicate sub-typing.
9 Schostak produced extensive paper specifications of the ARM6 using various styles. He also
produced a high-fidelity implementation in ML and now works full time at ARM Ltd.



8 Anthony C. J. Fox, Michael J. C. Gordon, and Magnus O. Myreen

 6

Datapath Control: Instruction Decode ϕϕϕϕ2 
DIN 

IC IS  
* *  

data_proc t2 IREG 
mrs_msr t2 IREG 

ldr t2 IREG 
ldr t4 DATA 
str t2 IREG 

ldm t4 DATA 
ldm tn DATA 
swp t4 DATA 
br t2 IREG 

mrc t4 DATA 
ldc t2 IREG 
stc t2 IREG 
x x x 

 
DINWRITE 

IC IS  
* *  

data_proc t2 true 
mrs_msr t2 true 

ldr t2 true 
ldr t4 true 
str t2 true 

ldm t4 true 
ldm tn true 
swp t4 true 
swp t5 false 
br t2 true 

mrc t4 true 
ldc t2 true 
stc t2 true 
x x x 

 
MASK 
IC[*] = ldm IC[*] = stm IS RP  

* * * 3 2 1 0  
false false x x x x x x 

x x t2 x x x x 1111 1111 1111 1111 
x x x 0 0 0 0 MASK[15 : 1] ++ 0 
x x x 0 0 0 1 MASK[15 : 2] ++ 0 ++ MASK[0 : 0] 
x x x 0 0 1 0 MASK[15 : 3] ++ 0 ++ MASK[1 : 0] 
x x x 0 0 1 1 MASK[15 : 4] ++ 0 ++ MASK[2 : 0] 
x x x 0 1 0 0 MASK[15 : 5] ++ 0 ++ MASK[3 : 0] 
x x x 0 1 0 1 MASK[15 : 6] ++ 0 ++ MASK[4 : 0] 
x x x 0 1 1 0 MASK[15 : 7] ++ 0 ++ MASK[5 : 0] 
x x x 0 1 1 1 MASK[15 : 8] ++ 0 ++ MASK[6 : 0] 
x x x 1 0 0 0 MASK[15 : 9] ++ 0 ++ MASK[7 : 0] 
x x x 1 0 0 1 MASK[15 : 10] ++ 0 ++ MASK[8 : 0] 
x x x 1 0 1 0 MASK[15 : 11] ++ 0 ++ MASK[9 : 0] 
x x x 1 0 1 1 MASK[15 : 12] ++ 0 ++ MASK[10 : 0] 
x x x 1 1 0 0 MASK[15 : 13] ++ 0 ++ MASK[11 : 0] 
x x x 1 1 0 1 MASK[15 : 14] ++ 0 ++ MASK[12 : 0] 
x x x 1 1 1 0 MASK[15 : 15] ++ 0 ++ MASK[13 : 0] 
x x x 1 1 1 1 0 ++ MASK[14 : 0] 

This was translated into the following HOL definition:

` ∀ic is ireg data.

DIN ic is ireg data =

if

((ic = ldr) ∨ (ic = ldm) ∨ (ic = swp) ∨ (ic = mrc)) ∧
(is = t4) ∨ (ic = ldm) ∧ (is = tn)

then

data

else

ireg

Here ic represents the instruction class and is is the instruction step, for example,
t3 is the first cycle of the pipeline execute stage and tn represents an iterated phase.
By defining the next-state behaviour of all of the processor’s latches and buses, it
was possible to define a next-state function for the entire ARM6 core. Formal veri-
fication proceeded by case-splitting over the instruction class – the final version had
seventeen such classes. Inevitably a small number of bugs were found in all of the
specifications. Ultimately the ARM6 can be regarded as a reference implementation
and so the formal verification can be seen an exercise in developing an ISA model
that is a verified abstraction of the processor.

1.2.4.1 Coverage.

Somewhat confusingly, the ARM6 processor implements version three of the ARM
architecture, written as ARMv3. To begin with, all of the ARMv3 instructions were
modelled at the ISA level but some “hard” features were not included in the first
ARM6 model – accordingly they were dropped from the ISA model prior to car-
rying out the initial verification attempt. The omissions included the mul, ldm and
stm instructions, which all have relatively complex low-level behaviour (an iterated
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phase).10 To complete the formal proof invariants were constructed for these cases.
The coprocessor instructions and hardware interrupts required models with input
and output and this is discussed below. A feature complete formal verification was
finished in 2005, see [9].

1.2.4.2 Input and output.

To accommodate input and output (I/O) features, the HOL formalization of the
Swansea approach was extended. It was also necessary to make significant changes
to the ISA and micro-architecture models, and the formal verification required a fair
amount of reworking. More sophisticated reasoning is required when verifying the
correctness of coprocessor instructions and hardware interrupts. For example, the
communication between the ARM core and coprocessor happens through a busy-
wait loop, which has to be assumed to terminate after some indeterminate interval.
It is also necessary to reason about the priority and timing of interrupts and, added
to this mix, a reset signal can abort instructions at any cycle.

In the process of adding I/O, the memory was removed from the state-space of
the ISA and micro-architecture specifications. At the ISA level this meant that the
state-space consisted of just the programmer’s model registers, together with an
instruction register (the op-code of the instruction to be run) and a exception status
field, that is:

S = (RName→ word32)×word32×Exception

The next-state function is then of the form next : S× I → S, where I represents a
set of input values i.e. data from memory and coprocessors, together with hard-
ware interrupts. There is also an output function out : S→O that models data being
passed from the processor to the memory and coprocessors. One consequence of
these changes is that the resulting next-state functions no longer provide a direct
means to run programs i.e. there is no longer a prescriptive model of memory, just
an interface.

1.2.5 Beyond the ARM6

Following the formal verification of 2005, it was decided to extend the ISA model
and focus on machine code verification, forgoing the considerable overhead associ-
ated with further extending and re-verifying the ARM6 model. It was at about this
time that Magnus Myreen started his PhD at Cambridge. To begin with ARMv3M
was supported (with the inclusion of long [64-bit] multiplies) and then ARMv4 was
covered (through the addition of half-word and signed load and store instructions).
At the time of writing this article, the ARMv4 architecture is still very much in use

10 The ARM6 ALU does not contain a multiplier, so instead the processor’s adder and shifter are
used to implement Booth’s algorithm over a number of clock cycles.
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– it is implemented by a selection of processors in the ARM7, ARM8 and ARM9
families (as used in the Nintendo DS and Apple iPod).

After making these extensions, the next step was to provide support for reasoning
about assembly code. In particular, it is not especially practical to work directly
with 32-bit machine-code values. To this end, a HOL type was added to represent
decoded ARM instructions, a parser/assembler was written,11 and there was also
support for pretty-printing instructions i.e. providing disassembly of machine code.

A new top-level next-state function was defined (using the existing definitions as
sub-functions) and this reintroduced the main memory as part of the state-space.
Consequently it was again possible to run code using the model and one could
also start reasoning about the semantics of programs. A pure memory model was
assumed, that is to say, the memory was treated as a simple array with read and
write accesses that never fail. A fast method for running code (useful in testing the
model) was provided through the use of Konrad Slind’s EmitML tool – this con-
verted the HOL definitions into Standard ML. This ML code was compiled with
MLton, resulting in an instruction throughput performance of approximately ten
thousand instructions-per-second (10 kips).

It was then necessary to address the problem that the formal model some-
what obfuscates the behaviour of particular instruction instances. For example,
one cannot read the specification and immediately see the effect of the instruction
add r1,r2,r3. The reasons for this are: the underlying model is based on machine
code; the specification is structuring according to instructions classes (not instruc-
tion instances); and the overall semantics is expressed through one monolithic, top-
level next-state function. To address this, a collection of single-step theorems of the
following form are generated:

P(s)⇒ (next(s) = s′) .

Here the antecedent predicate P represents the context (showing exactly which in-
struction instance is to be run) and s′ is the result of symbolically evaluating the
model in this context. These theorems are generated using forward-proof (as op-
posed to goal-directed proof) and simplifications are applied to make the results as
user-friendly as possible. The resulting theorems make the specification more acces-
sible and usable. The term representing s′ can be examined to see which registers
and memory locations have been read and/or updated and this is pertinent to Magnus
Myreen’s code verification work.

1.2.5.1 Further refinements.

With the addition of the 16-bit Thumb instructions, the ARMv4 model was later
extended to ARMv4T. A more advanced mechanism for constructing a complete
system was also examined i.e. building a system composed of ISA, memory and

11 This was originally done using mosmllex and mosmlyac and later ported to mllex and mlyacc,
so as to generate Standard ML.
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coprocessors models. A compositional, circuit-based style was adopted, wherein
the output from one unit is connected to the input of another. This means that one
can more easily consider different system configurations, for example, “plugging-
in” different memory models. This contrasts with the previous approach wherein the
memory was more hard-wired into the ISA specification.

1.2.6 Going Monadic

In addition to his work with the ARM architecture, Myreen has also worked with
formal models of the x86 and PowerPC architectures. The x86 model initially came
from collaborating with Susmit Sarkar, who has been working with Peter Sewell and
others in the field of relaxed memory models, see [1]. This group made enquiries
as to the suitability of the ARM model with respect to their research. However, a
single-step operational semantics was not what they after – they needed to know the
precise order of all memory and register accesses. In collaboration with Myreen,
they had developed a monadic approach to ISA specification and, inspired by this,
Fox agreed to completely re-specify the entire ARM ISA using this approach. This
would provide an event-based semantics for work on relaxed memory models and
an operational semantics for work on code verification.

In their monadic approach three principle operators are used: sequencing (seqT
or >>=), parallel composition (parT or |||), and returning a constant value (constT
or return). For example, in

(f ||| g) >>= (λ (x,y). return (x + y + 1))

the operations f and g are performed in parallel and the results are then combined in
a summation and returned. The overall type of this term is num M and the precise de-
tails of this type are hidden underneath a HOL type abbreviation on M. For example,
in the standard ARM operational semantics we have:

’a M = arm state → (’a, arm state) error option

Here arm state is the state-space and error option is just like the standard func-
tional option type, except that the “none” case is tagged with a string, which pro-
vides a useful mechanism for reporting erroneous behaviour. In this sequential op-
erational semantics, the parT operator is evaluated sequentially with a left-to-right
ordering e.g. f is applied before g in the example above.

There are many advantages to working in this monadic style, these include:

• The ability to modify the underlying semantics by simply changing the monad’s
type and the definitions of the monadic operators.

• The ability to avoid excessive parameter passing and to hide details of the state-
space. In some cases there might not even be a state-space.

• It provides a clean way to handle erroneous cases. In particular, it is easy to model
behaviour that the ARM architecture classifies as UNPREDICTABLE.
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• With some pretty-printing support, the definitions look more like imperative
code. This makes the specifications more readable to those unfamiliar with func-
tional programming and it also provides a more visible link with pseudo-code
from reference manuals.

For example, consider the following pseudo-code from the ARM architectural ref-
erence manual:

Application Level Programmers’ Model 

A2-12 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Note
 The names SP, LR and PC are preferred to R13, R14 and R15. However, sometimes it is simpler to use the 
R13-R15 names when referring to a group of registers. For example, it is simpler to refer to Registers R8 to 
R15, rather than to Registers R8 to R12, the SP, LR and PC. However these two descriptions of the group of 
registers have exactly the same meaning.

A2.3.1 Pseudocode details of operations on ARM core registers

In pseudocode, the R[] function is used to:
• Read or write R0-R12, SP, and LR, using n == 0-12, 13, and 14 respectively.
• Read the PC, using n == 15.

This function has prototypes:

bits(32) R[integer n]
    assert n >= 0 && n <= 15;

R[integer n] = bits(32) value
    assert n >= 0 && n <= 14;

The full operation of this function is explained in Pseudocode details of ARM core register operations on 
page B1-12.

Descriptions of ARM store instructions that store the PC value use the PCStoreValue() pseudocode function 
to specify the PC value stored by the instruction:

// PCStoreValue()
// ==============

bits(32) PCStoreValue()
    // This function returns the PC value. On architecture versions before ARMv7, it
    // is permitted to instead return PC+4, provided it does so consistently. It is
    // used only to describe ARM instructions, so it returns the address of the current
    // instruction plus 8 (normally) or 12 (when the alternative is permitted).
    return PC;

Writing an address to the PC causes either a simple branch to that address or an interworking branch that 
also selects the instruction set to execute after the branch. A simple branch is performed by the 
BranchWritePC() function:

// BranchWritePC()
// ===============

BranchWritePC(bits(32) address)
    if CurrentInstrSet() == InstrSet_ARM then
        if ArchVersion() < 6 && address<1:0> != ‘00’ then UNPREDICTABLE;
        BranchTo(address<31:2>:’00’);
    else
        BranchTo(address<31:1>:’0’);

An interworking branch is performed by the BXWritePC() function:
With pretty-printing turned on this corresponds with the following HOL code:

` ∀ii address.

branch write pc ii address =

do

iset ← current instr set ii;

if iset = InstrSet ARM then

do

version ← arch version ii;

if version < 6 ∧ (1 >< 0) address 6= 0w then

errorT "branch write pc: unpredictable"

else

branch to ii ((31 ’’ 2) address)

od

else

branch to ii ((31 ’’ 1) address)

od

Although the translation is not literal, there is clearly a connection between the
two specifications. The function branch write pc has return type unit M, that
is to say, it is similar to a procedure (or void function in C). The HOL model
introduces a variable ii, which is used to uniquely identify the source of all read
and write operations – this becomes significant in multi-core systems with shared
memory. The operator errorT is used to handle the unpredictable case. The word
extract and slice operations (>< and ’’) are used to implement the bit operations
shown in the ARM reference. Inequality is overloaded to be <>, which corresponds
with != in the pseudo-code. Observe that the HOL specification does not explicitly
refer to state components; such details are hidden by the monad, and the operations
arch version and current instr set automatically have access to all the data
that they need. In the sequential model, the state actually contains a component
that identifies the specific version of the architecture being modelled e.g. ARMv4 or
ARMv4T, both of which give a version number of four. This makes it possible to
simultaneously support multiple architecture versions. Further refinement has also
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been made in the process of producing the new specification, especially with regard
to instruction decoding and the representation of instructions.

1.2.6.1 Coverage.

The monadic specification covers nearly all of the currently supported ARM archi-
tecture versions, that is to say: ARMv4, ARMv4T, ARMv5T, ARMv5TE, ARMv6,
ARMv6K, ARMv6T2, ARMv7-A and ARMv7-R. A significant number of new in-
struction were introduced with ARMv6, which was introduced with the ARM11
family of processors. The latest generation (ARMv7) has only a small number of
extra ARM instructions but these versions do all support Thumb2 – this provides
a large number of double-width Thumb instructions, which cover nearly all of the
functionality of the standard ARM instructions. The Cortex-A8 processor (as found
in the Apple iPhone 3GS and Palm Pre) implements ARMv7-A.

The HOL model also covers the Security and Multiprocessor extensions. It does
not support Jazelle, which provides hardware support for running Java bytecode.
Technical details about Jazelle and its implementations are restricted to ARM li-
censees only, see [2]. Consequently, a HOL specification of Jazelle is very unlikely.
Documentation is available for the ThumbEE, VFP (vector floating-point) and Ad-
vanced SIMD extensions but they have not been specified yet – the SIMD exten-
sions were introduced with ARMv7 and the associated infrastructure is referred to
as NEONTM technology.

1.2.6.2 Single-step theorems.

Recently a tool for generating single-step theorems for the monadic model has been
developed. These theorems are now generated entirely on-the-fly for specific op-
codes.12 This contrasts with the previous approach whereby a collection of pre-
generated theorems (effectively templates) are stored and then specialised prior to
use. The old approach is not practical in the context of the much larger number of
instructions and range of contexts. The single-step theorems are generated entirely
through forward proof and so the process is not especially fast. Consequently, it
may prove necessary to store some of the resulting theorems in order to improve
runtimes further down the line.

The function call

arm_stepLib.arm_step "v6T2,be,thumb,sys" "FB02F103";

produces the following theorem

12 This tool makes heavy use of the HOL conversion EVAL.
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` ∀state.
(ARM ARCH state = ARMv6T2) ∧ (ARM EXTENSIONS state = {}) ∧...∧
(ARM MODE state = 31w) ∧ aligned (ARM READ REG 15w state,2) ∧
(ARM READ MEM (ARM READ REG 15w state + 3w) state = 3w) ∧
(ARM READ MEM (ARM READ REG 15w state + 2w) state = 241w) ∧
(ARM READ MEM (ARM READ REG 15w state + 1w) state = 2w) ∧
(ARM READ MEM (ARM READ REG 15w state) state = 251w) ⇒
(ARM NEXT state =

SOME

(ARM WRITE REG 1w

(ARM READ REG 2w state * ARM READ REG 3w state)

(ARM WRITE REG 15w (ARM READ REG 15w state + 4w) state)))

For brevity/clarity, some parts of the antecedent have been omitted. The first ar-
gument to arm step is a string containing configuration options e.g. the architec-
ture version and the byte ordering. The second string is the instruction op-code.
In the example above, 0xFB02F103 is the machine code for the Thumb2 instruc-
tion mul r1,r2,r3.13 The four instruction bytes are read from memory using the
program-counter, which is register fifteen.

The next-step theorem shown above bears little or no visible resemblance to the
underlying monadic specification. The functions in uppercase are defined in post-
hoc manner, so as to present a more conventional state-oriented semantics. The top
level next-state function ARM NEXT returns an option type – if an error occurred (e.g.
with an unpredictable case) then the result would be NONE but in practice the tool
raises an ML exception for such cases.

1.2.6.3 Active and future work.

Recent work includes updating the parser, assembler and pretty-printing support.
The instruction parser has been completely rewritten in ML, abandoning the use of
mllex and mlyacc. It would have been possible to avoid writing an assembler and
instead interface with GNU’s binutils but this would require users to specifically
install these tools, configuring them as an ARM cross-compiler. Also, only the very
latest version of the GNU assembler supports Thumb2 and it has had a small number
of teething problems (bugs) in that area.

Active work includes validating the HOL ARM models by comparing the results
of executing instructions on the formal models in HOL with the results of executing
the same instructions on ARM processors. The test bench for this uses off-the-shelf
boards and runs continuously using automatically generated instructions (e.g. one
such board that is used is the Beagle Board: beagleboard.org). This testing has
revealed some subtle formalisation errors that would have been very hard to identify
by simply reading the ARM instruction set documentation.

One future area of work will be in handling I/O. It should be relatively straight-
forward to add hardware interrupts. Readers may have observed that the sequential

13 At the moment op-codes are being generated using GNU’s binutils tools. FB02F103 breaks
up into 251w, 2w, 241w and 3w, which are used in the theorem.
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version of the monadic model again includes the memory as part of the state-space.
This could be considered to be a regressive step in comparison with the approach
discussed at the end of Section 1.2.5. However, the monadic approach does make it
easier modify the underlying memory model.14 It is expected that memory-mapped
I/O (MMIO) can be supported by interleaving calls to next-state functions i.e. the
ISA next-state function would be interleaved with a MMIO next-state function.

1.3 High-assurance software engineering

In 2005, Myreen started his PhD which came to focus on theories and tools for
proving ARM machine code correct on top of Fox’s formal specification of the
ARM ISA. This section presents the current state of the resulting framework which
has come to support both formal verification of existing ARM machine code and
synthesis of new ARM code from functional specifications. The framework consists
of three layers:

1. Hoare logic for machine code is used for making concise and composable for-
mal specifications about ARM code (Section 1.3.1).

2. A decompiler aids verification by automatically extracting functional descrip-
tions of ARM code from Fox’s detailed ISA specification (Section 1.3.2).

3. A compiler is used for synthesis of new ARM code from, possibly partial, func-
tional specifications (Section 1.3.3).

Our to-date largest case study, synthesis of a formally verified LISP interpreter, is
outlined in Section 1.3.4.

1.3.1 Machine-code Hoare logic

Machine-code programs operate over a heterogeneous state consisting of register,
memory locations and various status bits. As a result keeping track of which re-
sources might have been altered by some ARM code can easily become tedious.
In order to avoid always explicitly stating “. . . and nothing else changed” (a frame
property), we write our theorems in terms of a machine-code Hoare triple {p} c {q}
which implicitly formalise a frame property (from separation logic [26]):

{p} c {q} is true if any state of an ARM processor s which satisfies precondition p, can
through execution of code c on the ARM ISA reach a state s′ which satisfies postcondition
q; and, furthermore, all resources not mentioned in p will remain unchanged in the transition
from s to s′.

14 Although at the moment the arm step tool does make some assumptions about the memory
model.
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A formal definition of this Hoare triple will be given later, also see [22].
The frame property manifests itself in practice as a proof rule called the frame

rule (again borrowed from separation logic). The frame rules allows an arbitrary as-
sertion r to be added to any Hoare triple {p} c {q} using the separating conjunction
∗ (defined later):

{p} c {q} =⇒ ∀r. {p∗ r} c {q∗ r}

The frame property of our Hoare triples allows us to only mention locally relevant
resources, e.g. a theorem describing the ARM instruction add r4,r3,r4 (encoded
as 0xE0834004), need only mention resources register 3, 4 and 15 (the program
counter). For example the following Hoare-triple theorem states, if register 3 has
value a, register 4 has value b and the program counter is p, then the code E0834004
at location p will reach a state where register 3 has value a, register 4 holds a+ b
and the program counter is set to p+4:

{ r3 a∗ r4 b∗pc p}
p : E0834004
{ r3 a∗ r4 (a+b)∗pc (p+4)}

The frame rule allows us to infer that the value of register 5 is left unchanged by
the above ARM instruction, since we can instantiate r in the frame rule above with
an assertion saying that register 5 holds value c, i.e. r5 c.

{ r3 a∗ r4 b∗pc p∗ r5 c}
p : E0834004
{ r3 a∗ r4 (a+b)∗pc (p+4)∗ r5 c}

All user-level ARM instructions satisfy specification in this style. Memory reads
and writes are not much different, e.g. Hoare-triple theorem describing the instruc-
tion swp r4,r4,[r3] (E1034094) for swapping the content of memory location a
given in register 3 with that of register 4 is given as follows. Here m m states that a
function m, a partial mapping from addresses (32-bit words) to values (32-bit words)
correctly represents a portion of memory (addresses domain m), address a must be
in the memory portion covered by m and for tidiness needs to be word-aligned, i.e.
a & 3 = 0; we write m[a 7→ b] for m updated to map a to b.

a & 3 = 0∧a ∈ domain m =⇒
{ r3 a∗ r4 b∗m m∗pc p}
p : E1034094
{ r3 a∗ r4 (m(a))∗m (m[a 7→ b])∗pc (p+4)}

The following subsections will present the definition of our machine-code Hoare
triple and some proof rules (HOL theorems) that have been derived from the defini-
tion of the Hoare triple, and are hence sound.
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1.3.1.1 Set-based separating conjunction.

The definition of our machine-code Hoare triple uses the separating conjunction,
which we define unconventionally to split sets rather than partial functions. Our
definition of the set-based separating conjunction states that (p ∗ q) s whenever s
can be split into two disjoint sets u and v such that p holds for u and q holds for v:

(p∗q) s = ∃u v. p u∧q v∧ (u∪ v = s)∧ (u∩ v = {})

In order to make use of this set-based separating conjunction we need to translate
ARM states into sets of state components. We define the type of an ARM state
elements as a data-type with constructors:

Reg : word4→ word32→ arm state element
Status : status names→ boolean→ arm state element
Memory : word30→ word32→ arm state element
Undef : bool→ arm state element

We define a function arm2set for translating states representation used in the
ARM ISA specification into sets of ARM state elements, using read functions
arm read reg, arm read mem arm read status, arm read undefined which, respec-
tively, read a register, memory location, status bit and undefined flag. Here range f =
{ y | ∃x. f x = y }.

arm2set state =
range (λ r. Reg r (arm read reg r state)) ∪
range (λa. Mem a (arm read mem a state)) ∪
range (λ s. Status s (arm read status s state)) ∪
{ Undef (arm read undefined state) }

Some basic assertions are defined over sets of ARM state elements as follows.
We often write r1 a, r2 b, etc. as abbreviations for reg 1 a, reg 2 b, etc.

(reg i a) s = (s = {Reg i a})
(mem a w) s = (s = {Mem a w})

These assertions have their intended meaning when used with arm2set:

∀p s. (mem a w∗ p) (arm2set s) =⇒ (arm read mem a s = w)
∀p s. (reg i v∗ p) (arm2set s) =⇒ (arm read reg i s = v)

The separating conjunction separates assertions:

∀p s. (mem a x∗mem b y∗ reg i u∗ reg j v∗ p) (arm2set s) =⇒ a 6= b ∧ i 6= j

Other assertions used in this text are:
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aligned a = (a & 3 = 0)
emp s = (s = {})
〈b〉 s = (s = {})∧b

(code c) s = (s = {Mem (a[31—2]) i | (a, i) ∈ c})
(m m) s = (s = {Mem (a[31—2]) (m a) | a ∈ domain m∧aligned a})

(pc p) s = (s = {Reg 15 p,Undef F})∧aligned p
(s (n,z,c,v)) s = (s = {Status N n,Status Z z,Status C c,Status V v})

1.3.1.2 Definition of Hoare triple.

Let run(n,s) be a function which applies the next-state function from our ARM ISA
specification n times to ARM state s.

run(0,s) = s

run(n+1,s) = run(n,arm next state(s))

Our machine-code Hoare triple has the following definition: any state s which sat-
isfies p separately from code c and some frame r (written p∗ code c∗ r), will reach
(after some k applications of the next-state function) a state which satisfies q sepa-
rately from the code c and frame r (written q∗ code c∗ r).

{p} c {q} = ∀s r. (p∗ code c∗ r) (arm2set(s)) =⇒
∃k. (q∗ code c∗ r) (arm2set(run(k,s)))

As a convention, we write concrete code sets c = {(p, i),(q, j), . . .} as comma
separated lists without brackets “ p : i, q : j, . . .” in order to avoid confusion with
the curly brackets used when writing Hoare triples.

An example of what a machine-code Hoare triple means in terms of the basic
read functions is shown in Figure 1.1. The last line which relates arm2set state to
arm2set state′ states that nothing (observable through the read functions) changed
other than registers 7, 8 and 15. This fact that nothing outside of the foot-print of
the specification was affected, comes from the universally quantified frame r in the
definition of the machine-code Hoare triple.

1.3.1.3 Proof rules.

Below we list some theorems proved from the definition of our Hoare triple. These
theorems are cumbersome to use in manual proofs, but easy to use in building proof
automation, which is the topic of the next two sections.

Frame: {p} c {q} =⇒ ∀r. {p∗ r} c {q∗ r}

The frame rule allows any assertions to be added to the pre- and postconditions of a Hoare
triple, often applied before composition.



1 Specification and Verification of ARM Hardware and Software 19

{ r7 x∗ r8 y∗pc p} p : E2878001 { r7 x∗ r8 (x+1)∗pc (p+4)}
=
∀state. (arm read reg 7 state = x) ∧

(arm read reg 8 state = y) ∧
(arm read reg 15 state = p) ∧ aligned p ∧
(arm read undefined 15 state = F) ∧
(arm read mem p state = E2878001) =⇒
∃n state′. (state′ = run(n,state)) ∧

(arm read reg 7 state′ = x) ∧
(arm read reg 8 state′ = x+1) ∧
(arm read reg 15 state′ = p+4) ∧ aligned (p+4) ∧
(arm read undefined 15 state′ = F) ∧
(arm read mem p state′ = E2878001) ∧
(arm2set state−Frame = arm2set state′−Frame)

where Frame = range (λw. Reg 7 w) ∪ range (λw. Reg 8 w) ∪ range (λw. Reg 15 w)

Fig. 1.1 A machine-code Hoare triple expanded.

Composition: {p} c1 {q}∧{q} c2 {r} =⇒ {p} c1∪c2 {r}

The composition rule composes two specifications and takes the union of the two code sets,
which may overlap (happens for loops).

Precondition strengthening: {p} c {q} ∧ (∀s. r s =⇒ p s) =⇒ {r} c {q}
Postcondition weakening: {p} c {q} ∧ (∀s. q s =⇒ r s) =⇒ {p} c {r}

Preconditions can be strengthened, postconditions can be weakened.

Precondition exists: {∃x. p x} c {q} ⇐⇒ ∀x. {p x} c {q}

Existential quantifiers in the precondition are equivalent to universal quantifiers outside of
the Hoare triple specification.

Move pure condition: {p∗ 〈b〉} c {q} ⇐⇒ (b =⇒ {p} c {q})

Pure stateless assertions, 〈b〉, can be pulled out of the precondition. Here b has type bool.

Code extension: {p} c {q} =⇒ ∀e. {p} c∪e {q}

The code can be extended arbitrarily. This rule highlights that {p} c {q} means that c is
sufficient to transform any state satisfying p into a state satisfying q. Thus any larger set
c∪e is also sufficient.

1.3.2 Decompilation of ARM code

To aid verification of machine code, we have developed a novel verification tech-
nique [24] which is based on decompiling machine code into functions in the logic
of a theorem prover, in this case the HOL4 theorem prover.
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1.3.2.1 Example.

Given some ARM code, which calculates the length of a linked list,

0: E3A00000 mov r0, #0 ; set reg 0 to 0
4: E3510000 L: cmp r1, #0 ; compare reg 1 with 0
8: 12800001 addne r0, r0, #1 ; if not equal: add 1 to reg 1

12: 15911000 ldrne r1, [r1] ; load mem[reg 1] into reg 1
16: 1AFFFFFB bne L ; jump to compare

the decompiler reads the hexadecimal numbers, extracts a function f and a safety
condition fpre which describe the data-update performed by the ARM code:

f(r0,r1,m) =
let r0 = 0 in g(r0,r1,m)

g(r0,r1,m) =
if r1 = 0 then (r0,r1,m) else

let r0 = r0+1 in
let r1 = m(r1) in

g(r0,r1,m)

fpre(r0,r1,m) =
let r0 = 0 in gpre(r0,r1,m)

gpre(r0,r1,m) =
if r1 = 0 then T else

let r0 = r0+1 in
let cond = r1 ∈ domain m∧aligned r1 in
let r1 = m(r1) in

gpre(r0,r1,m)∧ cond

The decompiler also proves the following theorem which state that f is accurate
with respect to the ARM model, for input values that satisfy fpre. Here notation
(k1,k2, ...,kn) is (x1,x2, ...,xn) abbreviates k1 x1 ∗ k2 x2 ∗ ... ∗ kn xn, i.e. expression
(r0, r1,m) is (r0,r1,m) states that register 0 has value r0, register 1 is r1 and part of
memory is described by m.

{(r0, r1,m) is (r0,r1,m)∗ s∗pc p∗ 〈fpre(r0,r1,m)〉}
p : E3A00000,E3510000,12800001,15911000,1AFFFFFB
{(r0, r1,m) is (f (r0,r1,m))∗ s∗pc (p+20)}

(1.1)

The user can then prove that the original machine code indeed calculates the
length of a linked-list by simply proving that the extracted function f does that. Let
list state that abstract list l is stored in memory m from address a onwards.

list (nil,a,m) = a = 0
list (x::l,a,m) = ∃a′. m(a) = a′∧m(a+4) = x∧a 6= 0 ∧

list (l,a′,m)∧aligned a

Let length l be the length of an abstract list l, e.g. length (4::5::nil) = 2. It is easy
(15 lines of HOL4) to prove, by induction on the abstract list l, that the function
f, from above, calculates the length of a linked list and also that list implies the
precondition fpre.

∀x l am. list (l,a,m) =⇒ f(x,a,m) = (length l,0,m) (1.2)
∀x l am. list (l,a,m) =⇒ fpre(x,a,m) (1.3)
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Given (1.2) and (1.3), it follows immediately from (1.1) that the ARM code calcu-
lates the length of a linked-list correctly:

{(r0, r1,m) is (r0,r1,m)∗ s∗pc p∗ 〈list (l,r1,m)〉}
p : E3A00000,E3510000,12800001,15911000,1AFFFFFB
{(r0, r1,m) is (length l,0,m)∗ s∗pc (p+20)}

1.3.2.2 Implementation.

The following loop-introduction rule is the key idea behind our decompiler imple-
mentation. This rule can introduce any tail-recursive function tailrec, with safety
condition tailrec pre, of the form:

tailrec x = if G x then tailrec (F x) else (D x)

tailrec pre x = Q x ∧ (G x =⇒ tailrec pre (F x))

Given a theorem for the step case, {r(x)} c {r(F x)}, and one for the base case,
{r(x)} c {r′(D x)}, the loop rule can introduce tailrec:

∀r r′ c. (∀x. Q x∧G x =⇒ {r(x)} c {r(F x)}) ∧
(∀x. Q x∧¬G x =⇒ {r(x)} c {r′(D x)})
=⇒ (∀x. tailrec pre x =⇒ {r(x)} c {r′(tailrec x)})

Parameters F , D, G, Q, r, r′ were instantiated as follows for introduction of g in our
example above.

F = D = λ (r0,r1,m). if r1 = 0 then (r0,r1,m) else (r0+1,m(r1),m)
G = λ (r0,r1,m). if r1 = 0 then F else T
Q = λ (r0,r1,m). if r1 = 0 then T else (r1 ∈ domain m∧aligned r1)
r = λ (r0,r1,m). (r0, r1,m) is (r0,r1,m)∗ s∗pc p

r′ = λ (r0,r1,m). (r0, r1,m) is (r0,r1,m)∗ s∗pc (p+20)

The loop rule can be derived from the rule for composition of Hoare triples given
in the previous section. For details of decompilation, see [22, 24].

1.3.3 Extensible proof-producing compilation

It is often the case that we prefer to synthesise ARM code from specifications rather
than apply post hoc verification to existing ARM code. For this purpose we have
developed a proof-producing compiler [25] which maps tail-recursive functions in
HOL4, i.e. functional specifications, to ARM machine code and proves that the
ARM code is a valid implementation of the original HOL4 functions.
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1.3.3.1 Example 1.

Given a function f,

f(r1) = if r1 < 10 then r1 else let r1 = r1−10 in f(r1)

the compiler produces machine code,

0: E351000A L: cmp r1,#10 ; compare reg 1 with 10
4: 2241100A subcs r1,r1,#10 ; if less: subtract 10 from reg 1
8: 2AFFFFFC bcs L ; jump to compare

and proves that the generated code calculates f:

{r1 r1 ∗pc p∗ s}
p : E351000A,2241100A,2AFFFFFC
{r1 f(r1)∗pc (p+12)∗ s}

In case we have manually proved that f calculates unsigned-word modulus of 10,
i.e. ∀x. f(x) = x mod 10, then we immediately know that the ARM code calculates
modulus of 10:

{r1 r1 ∗pc p∗ s}
p : E351000A,2241100A,2AFFFFFC
{r1 (r1 mod 10)∗pc (p+12)∗ s}

1.3.3.2 Example 2.

An important feature of this compiler is its support for extensions. If the compiler
is supplied with the above theorem which states that the ARM instructions E351000A

2241100A 2AFFFFFC together assign r1 mod 10 to r1, then subsequent compilations
can make use of this verified code. For example,

f(r1,r2,r3) = let r1 = r1 + r2 in
let r1 = r1 + r3 in
let r1 = r1 mod 10 in

r1

will compile successfully into a theorem which makes use of the previously verified
code (the last three instructions in the code below):

{r1 r1 ∗ r2 r2 ∗ r3 r3 ∗pc p∗ s}
p : E0811002,E0811003,E351000A,2241100A,2AFFFFFC
{r1 (f(r1,r2,r3))∗ r2 r2 ∗ r3 r3 ∗pc (p+20)∗ s}
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1.3.3.3 Implementation.

The compiler is implemented using translation validation based on the decompiler
from above; for each function f, the compiler will:

1. generate machine code for input function f with an unverified algorithm;
2. decompile the generated code into a function f ′;
3. automatically prove f = f ′.

The compiler returns to the user, the theorem certificate produced in step 2, but with
f ′ replaced by f using the rewrite theorem produced in step 3.

The compiler’s separation between code generation (step 1) and certification
(steps 2 and 3) has two useful consequences: code generation need not be proof-
producing, and multiple lightweight optimisations can be made in step 1 with prac-
tically no added proof burden for steps 2 and 3. Step 1 is allowed to produce any
code for step 3 will be able to prove f = f ′. For example, just doing expansion of
let expressions in step 3 immediately makes optimisation such as register renaming,
some instruction reordering and dead-code removal unobservable.

Extensions are implemented by making the decompiler use the theorems pro-
vided when constructing the step- and base-theorems for instantiating its loop rule,
as explained in the previous section.

1.3.4 Case study: verified LISP interpreter

The construction of a verified LISP interpreter [23] is the, to date, largest case study
conducted on top of the ARM model. This case study included producing and veri-
fying implementations for:

• a copying garbage collector
• an implementation of basic LISP evaluation
• a parser and printer for s-expressions

These components were combined to produce an end-to-end implementation of a
LISP-like language, similar to the core of the original LISP 1.5 by McCarthy [21].

1.3.4.1 Example.

For a flavour of what we have implemented and proved consider an example: if our
implementation is supplied with the following call to function pascal-triangle,

(pascal-triangle ’((1)) ’6)

it parses the string, evaluates the expression and prints a string,

((1 6 15 20 15 6 1)

(1 5 10 10 5 1)
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(1 4 6 4 1)

(1 3 3 1)

(1 2 1)

(1 1)

(1))

where pascal-triangle had been supplied to it as
(label pascal-triangle

(lambda (rest n)

(cond ((equal n ’0) rest)

(’t (pascal-triangle

(cons (pascal-next ’0 (car rest)) rest) (- n ’1))))))

with auxiliary function:
(label pascal-next

(lambda (p xs)

(cond ((atomp xs) (cons p ’nil))

(’t (cons (+ p (car xs)) (pascal-next (car xs) (cdr xs)))))))

The theorem we have proved about our LISP implementation can be used to show
e.g. that running pascal-triangle will terminate and print the first n+ 1 rows of
Pascal’s triangle, without a premature exit due to lack of heap space. One can use
our theorem to derive sufficient conditions on the inputs to guarantee that there will
be enough heap space.

1.3.4.2 LISP evaluation.

The most interesting part of this case study is possibly the construction of verified
code for LISP evaluation. For this we used our extensible compiler, described above.

First, the compiler’s input language was extended with theorems that provide
ARM code that performs LISP primitives, car, cdr, cons, equal, etc. These theorems
make use of an assertion lisp, which states that a heap of s-expressions v1 . . .v6 is
present in memory. For car of s-expressions v1, we have the theorem:

is pair v1 =⇒
{ lisp (v1,v2,v3,v4,v5,v6, l)∗pc p }
p : E5933000
{ lisp (car v1,v2,v3,v4,v5,v6, l)∗pc (p+4) }

The cons primitive was the hardest one to construct and prove correct, since the im-
plementation of cons contains the garbage collector: cons is guaranteed to succeed
whenever the size of all live s-expressions is less than the heap limit l.

size v1 + size v2 + size v3 + size v4 + size v5 + size v6 < l =⇒
{ lisp (v1,v2,v3,v4,v5,v6, l)∗pc p }
p : E50A3018 E50A4014 E50A5010 ... E51A8004 E51A7008

{ lisp (cons v1 v2,v2,v3,v4,v5,v6, l)∗pc (p+332) }
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The above mentioned theorems extend the compiler input language with:

let v1 = car v1 in and let v1 = cons v1 v2 in

Once the compiler understood enough LISP primitives, we defined lisp eval as a
lengthy tail-recursive function, and used the compiler to synthesise ARM code for
implementing lisp eval.

In order to verify the correctness of lisp eval, we proved that lisp eval will al-
ways evaluate s to r in environment ρ whenever a clean relation semantics for LISP
evaluation, which had been developed in unrelated previous work [11], evaluates s
to r in environment ρ , written (s,ρ)→eval r. Here s-expression nil initialises vari-
ables v2, v3, v4 and v6; functions t and u are translation functions from one form of
s-expression into another.

∀s ρ r. (s,ρ)→eval r =⇒ fst (lisp eval (t s,nil,nil,nil,u ρ,nil, l)) = t r

1.3.4.3 Parsing and printing.

The heap of s-expressions defined within the lisp assertion used above is non-trivial
to set up. Therefore we constructed verified code for setting up and tearing down a
heap of s-expressions. The set-up code also parses s-expressions stored as a string
in memory, and sets up a heap containing that s-expression. The tear down code
prints into a buffer in memory, the string representation of an s-expression from the
heap. The code for set-up/tear-down, parsing/printing, was again synthesised from
functions in the HOL4 logic.

1.3.4.4 Final correctness theorem.

By composing theorems for parsing, evaluation and printing we get the final cor-
rectness theorem: if →eval relates s with r under the empty environment (i.e.
(s, [])→eval r), no illegal symbols are used (i.e. sexp ok (t s)), running lisp eval on
t s will not run out of memory (i.e. lisp eval pre(t s,nil,nil,nil,nil,nil, l)), the string
representation of t s is in memory (i.e. string a (sexp2string (t s))), and there is
enough space to parse t s and set up a heap of size l (i.e. enough space (t s) l), then
the code will execute successfully and terminate with the string representation of
t r stored in memory (i.e. string a (sexp2string (t r))). The ARM code expects the
address of the input string to be in register 3, i.e. r3 a.

∀s r l p.
(s, [])→eval r∧ sexp ok (t s)∧ lisp eval pre(t s,nil,nil,nil,nil,nil, l) =⇒
{ ∃a. r3 a∗ string a (sexp2string (t s))∗ enough space (t s) l ∗pc p }
p : ... code not shown ...
{ ∃a. r3 a∗ string a (sexp2string (t r))∗ enough space′ (t s) l ∗pc (p+10404) }
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We have also proved this result for similar x86 and PowerPC code. Our verified
LISP implementations run can be run on ARM, x86 and PowerPC hardware.

1.4 Conclusions and future research

The ARM verification project has been a fairly modest scale effort: one person
full-time specifying and verifying the hardware (Fox) and one to two part time
researchers looking at software and the background mathematical theories (Hurd,
Myreen). In addition, some students have spent time assisting the research, namely
Scott Owens, Guodong Li and Thomas Tuerk.

The project aims to verify systems built out of commercial-off-the-shelf com-
ponents where everything – microarchitecture up to abstract mathematics – is for-
malised within a single framework. The research is still in progress and, unlike the
celebrated CLI Stack [20], we have not yet completely joined up the various levels
of modelling, but this remains our goal. Unlike most other work, we have used a
COTS processor and have tried (and are still trying) to formally specify as much
as possible, including difficult features like input/output and interrupts. The closest
work we know of is the verification of security properties of the Rockwell Collins
AAMP7G processor [14, 13]. More on AAMP7G can be found in other chapters of
this book.

Even though the ARM ISA is relatively simple, the low-level details can over-
whelm verification attempts. During the project we have found that it is important
to abstract as much as possible so that proofs are not cluttered with such details. A
key tool for this has been the derivation of a next-state function for CPU-memory
combinations which then can be used to derive clean semantic specifications for in-
struction uses-cases and then support a further abstraction to Hoare-like rules for
machine code segments, with the frame problem managed via a separating conjunc-
tion. Some of the technical details pertaining to this abstraction methodology are
sketched in the preceding two sections.

Although our formal specifications include input/output, interrupts and facilities
for modelling complex memory models, we have yet (2009) to demonstrate sig-
nificant verification case studies that use these. Our current work aims to create a
complete functional programming platform on bare metal, with high-fidelity mod-
elling of system level timing and communication with the environment. We expect
that achieving this will take several more years of research at the current level of
effort.
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