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Abstract

The hol-4 proof system has been used to formally verify the correctness of the ARM6
micro-architecture. This paper describes the specification and verification of one instruc-
tions class, block data transfers; these are a form of load-store instruction in which a set
of up to sixteen registers can be transferred atomically. The ARM6 is a commercial RISC
microprocessor that has been used extensively in embedded systems – it has a 3-stage
pipeline with a multi-cycled execute stage. A list based programmer’s model specifica-
tion of the block data transfers is compared with the ARM6’s implementation which uses
a 16-bit mask. The models are far removed and reasonably complex, and this poses a
verification challenge. This paper describes the approach and some key lemmas used in
verifying correctness, which is defined using data and temporal abstraction maps.

1 Introduction

This paper presents a hol specification of the ARM block data transfer instruction class [7, 18],
together with a description of the ARM6 implementation and its formal verification using the
hol proof system. This work builds upon an ARM6 verification [6] which did not cover the
block data transfer or multiply instruction classes.

The correctness model and underlying approach used for this work has been formalised in
hol [5]. This methodology was developed at Swansea and work has continued there using
Maude [9, 10]. Using this approach, the correctness of the ARM6 implementation of the block
data transfers has been formally verified. This is achieved by relating state machine models at
the instruction set and micro-architecture levels of abstraction.

One source of difficultly in verifying this instruction class is the relatively complex nature of
the implementation. The ARM6 has a 3-stage pipeline with fetch, decode and execute stages,
and the execute stage can take a number of processor clock cycles to complete. With most
instructions the number of cycles required is a small constant value. For example, an ordinary
(single) load instruction takes three cycles, or five if the program counter is modified. The
processor control logic makes use of a counter (the instruction sequence, is) to implement this
behaviour. Typically this counter is incremented after each execute cycle and this provides a
simple mechanism to symbolically execute an instruction to completion. However, with block
data transfer instructions the counter takes and holds the value tn until a termination condition
is met (this can take up to sixteen cycles). A 16-bit mask is used to keep track of which registers
have been transfered and this forms the basis for the termination test. Consequently, symbolic
execution for this instruction class is not straightforward.

From a correctness standpoint one must consider the case of writing to the memory at the
address pc + 8 or pc + 4, where pc is the address of the instruction being executed. These
addresses correspond with instructions that have been fetched and decoded respectively.1 In
order to provide a clean model, the ARM6 should detect when these instructions have been
updated by a memory write and take steps to fetch and decode them again. However, the ARM6
does not waist costly control logic in dealing with this, instead it just carries on regardless.
Before the block data transfers were verified two solutions to this problem were applied (for
the verification of single word/byte data stores):

1. No-clobber method: a write to the addresses pc + 8 and pc + 4 is nullified at the pro-
grammer’s model and micro-architecture levels.

1The architecture does not split the main memory into program and data parts. Memory is byte addressable
and each 32-bit instruction occupies four bytes.
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User FIQ IRQ SVC Abort Undefined

r0 r0 r0 r0 r0 r0

r1 r1 r1 r1 r1 r1

r2 r2 r2 r2 r2 r2

r3 r3 r3 r3 r3 r3

r4 r4 r4 r4 r4 r4

r5 r5 r5 r5 r5 r5

r6 r6 r6 r6 r6 r6

r7 r7 r7 r7 r7 r7

r8 r8 fiq r8 r8 r8 r8

r9 r9 fiq r9 r9 r9 r9

r10 r10 fiq r10 r10 r10 r10

r11 r11 fiq r11 r11 r11 r11

r12 r12 fiq r12 r12 r12 r12

r13 r13 fiq r13 irq r13 svc r13 abt r13 und

r14 r14 fiq r14 irq r14 svc r14 abt r14 und

r15 (PC) r15 (PC) r15 (PC) r15 (PC) r15 (PC) r15 (PC)

CPSR CPSR CPSR CPSR CPSR CPSR

SPSR fiq SPSR irq SPSR svc SPSR abt SPSR und

Figure 1: ARM’s visible registers.

2. Data forwarding implementation: a write to these addresses is detected by the processor
and the fetch and decode components of the state are updated as appropriate.

The second method has a clean programmer’s model specification but it complicates, and
does not accurately model, the micro-architecture. Both of these methods were manageable
with STR instructions but they would have significantly added to the difficulty of verifying the
block data transfers. Therefore, a third method has been adopted: the programmer’s model is
augmented with two registers forming a rudimentary pipeline. A further more abstract level
of abstraction has been introduced to hide the pipeline i.e. the model accepts a stream of
instructions, abstracting out details about instruction fetching.

1.1 Related Work

Early work on the mechanical verification of processors includes: tamarack [13], secd [8],
the partial verification of Viper [4], Hunt’s FM8501 [11], and the generic interpreter approach
of Windley [19]. Following this work, Miller and Srivas verified some of the instructions of a
simple commercial processor called the AAMP5 [16]. Complex commercial designs have also
been specified, simulated and verified using ACL2 [2, 14].

With the addition of complex multi-stage pipelines and out-of-order execution, contempo-
rary commercial designs were considered too complex for complete formal verification. Re-
cently progress has been made in verifying academic designs based around Tomasulo’s algo-
rithm [15, 12, 17, 1]. The instruction sets used for this work are often relatively simple (i.e. no
block data transfers) with many based on the DLX architecture of Hennessy and Patterson.
Most recent projects have used variants of the flushing correctness model of Burch and Dill [3].
We use a stronger notion of correctness.

2 The Instruction Set Architecture

For details of the ARM programmer’s model the reader is referred to Furber [7] and the ARM
Architecture Reference manual [18]. A limited précis is provided here.

The ARM architecture’s visible state consists of a main memory and a set of 32-bit registers.
The main memory is effectively an array of 232 bytes. The registers form overlapping banks, as
shown in Figure 1. Six processor modes provide support for exception handling and system-level
programming. The general purpose registers are named r0 to r14, the program counter is r15,
and CPSR is the Current Program Status Register. When not in user mode the programmer
also has access to a Saved Program Status Register (SPSR). The CPSR stores the current
processor mode, together with four flags: N (negative), Z (zero), C (carry) and V (overflow).
These flags are used to control program flow: all instructions are conditionally executed. For
example, the instruction STMHI will be a no-op if C is clear or Z is set.
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write-back (auto-index)
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pre-/post-index

Figure 2: Encoding for the block data transfer instruction class.

2.1 Block Data Transfers

Block data transfer instructions load/store a set of general purpose register values from/to
main memory; the instruction format is shown in Figure 2. These instructions are used for
procedure entry and return (saving and restoring workspace registers), and in writing memory
block copy routines.

The set of registers to be transferred is encoded using a 16-bit value; the program counter
may be included in the list (bit fifteen). The memory block is determined by the base register
Rn, and the bits P and U. The W flag enables base register write back (auto-indexing). There
are also special forms of the instruction for accessing the user mode registers (when not in
user mode) and for restoring the CPSR when returning from an exception – these options are
controlled by the S flag and bit fifteen.

The instruction syntax is illustrated below:

LDM|STM{<cond>}<add mode> Rn{!}, <registers>

LDM{<cond>}<add mode> Rn{!}, <registers + pc>^

LDM|STM{<cond>}<add mode> Rn, <registers - pc>^

Here <cond> is a condition code, <addr mode> is the address mode and <registers> is a
list of registers. The block copying address modes are IA, IB, DA and DB – as indicated these
increment/decrement the address register after/before each memory access.2 An ! is used for
base register write-back, and the suffix ^ is used to set the S flag.

As an example, if the processor is in supervisor mode with the Z flag set, the instruction

LDMEQDB r0!, {r1,r2,pc}^

will perform the following assignments:

r0 ← r0-12; r1 ← mem[r0-12]; r2 ← mem[r0-8]; r15 ← mem[r0-4]; CPSR ← SPSR_svc .

All transfers are ordered: registers with lower indices are mapped to lower memory addresses.
The register list should not be empty i.e. the lowest sixteen bits of the op-code should not

all be clear. This restriction will be enforced by any sensible compiler and/or assembler, but
this does not guarantee that such instructions can never be executed (it is trivial to write an
assembly program that generates and then executes such an instruction). The ARM6 has an
unfortunate load multiple behaviour when the register list is empty – a load to the program
counter occurs. Rather than specify this at the programmer’s model level, the hol model of
the ARM6 has been modified to give a more sensible behaviour i.e. no load occurs.

With block stores, if the program counter is in the list then the value stored is implemen-
tation dependent. If the base register is in the list then write-back should not be specified
because the result is unpredictable. The hol programmer’s model specification has been tai-
lored to conform with ARM6 behaviour for these cases.

2.2 A HOL Specification

The hol specification of the block data transfers is shown in Figure 3. The function LDM STM

takes the current programmer’s model state, the processor mode and the instruction op-code,
and it gives the next state. This function is only called when it is established that op-code n

2Stack based mnemonics are available as an alternative: FA, FD, EA and ED are used to implement full/empty,
ascending/descending stacks.
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d̀ef LDM_STM (ARM mem reg psr) mode n =
let (P,U,S,W,L,Rn,pc_in_list) = DECODE_LDM_STM n in
let rn = REG_READ reg mode Rn in
let (bl_list,rn’) = ADDR_MODE4 P U rn n
and mode’ = if S ∧ (L ⇒ ¬pc_in_list) then usr else mode
and pc_reg = INC_PC reg in
let wb_reg =

if W ∧ ¬(Rn = 15) then REG_WRITE pc_reg (if L then mode else mode’) Rn rn’ else pc_reg
in

if L then
ARM mem (LDM_LIST mem wb_reg mode’ bl_list)

(if S ∧ pc_in_list then CPSR_WRITE psr (SPSR_READ psr mode) else psr)
else

ARM (STM_LIST mem (if FST (HD bl_list) = Rn then pc_reg else wb_reg) mode’ bl_list) wb_reg psr

Figure 3: Programmer’s model specification of block data transfers.

is a block data transfer instruction that passes the conditional execution test. The state space
constructor ARM takes a triple: the memory mem, the general purpose registers reg, and the
program status registers psr.

Although the definition of LDM STM is not especially large, there are some subtle aspects
to the semantics of block data transfers. Depending on the context, the processor mode is
either mode or mode’ (which might be set to user mode), therefore one must pay attention as
to which mode is being used when accessing registers. The register bank after incrementing
the program counter is denoted by pc reg and after register write-back this becomes wb reg.
If the first register of a block store is the base register then the value rn is stored (i.e. pc reg is
used), otherwise write-back may have occurred and rn’ is stored (wb reg is used). Write-back
occurs only if the base register is not the program counter.

There are four key sub-functions: DECODE LDM STM, ADDR MODE4, LDM LIST and STM LIST;
these are defined in Appendix B. The function DECODE LDM STM takes the op-code and splits
it into seven fields. For example, the instruction LDMEQDB r0!, {r1,r2,pc}^ is encoded with
the natural number 158367750, and this decodes as follows:

` DECODE_LDM_STM 158367750 = (T,F,T,T,T,0,T) .

The function ADDR MODE4 takes the address mode flags (P and U), the base address rn and the
op-code n, and it gives a pair (bl list,rn’). With our example:

` ADDR_MODE4 T F rn 158367750 = ([(1,rn - 0xC); (2,rn - 0x8); (15,rn - 0x4)],rn - 0xC) .

If write-back is enabled then register Rn takes the value rn’; bl list consists of pairs of the
form (rp,addr) where rp is a register index and addr is the corresponding memory address. A
function REGISTER LIST gives the list of register indices and this is ‘zipped’ with the memory
block addresses.

The function LDM LIST folds the list bl list with a memory-read, register-write operation
to give the next state of the register bank. Likewise, the function STM LIST folds the list with
a register-read, memory-write operation to give the state of the main memory.

This list based specification is compact and hopefully clear. Consequently, one can be
confident that the specification is consistency with respect to the reference [18] – it also provides
a model that can be executed efficiently. However, the verification must bridge a large gap
between this abstract semantics and the concrete processor implementation.

3 The Micro-architecture

A simplified view of the ARM6 data path is shown in Figure 4; the components of the data
path (busses, latches, multiplexers and functional units) are used in executing all of the ARM
instructions. When reading from memory the data is transfered to the data-in register din.
When writing to memory the data is placed on the B bus. The address register areg may be
updated using the program counter, the address incrementer, or output from the ALU.

Block data transfers are multi-cycled instructions; their execution can take from two to
twenty cycles to complete. The execute stage is split into sub-stages and these are shown
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Figure 4: The ARM6 Data Path.

in Tables 1(a) and 1(b) for the block load and store instructions respectively. The first two
cycles are needed for address computation and base register write-back, and then sub-stage tn
is repeated `− 1 times, where ` is the length of the register list. The leftmost columns in the
tables show the value of the instruction sequence counter (is) – this component forms part
of the processor’s control logic. Note that the cycle t2 is really the last execute cycle of the
previous instruction and so in this case the component is does not actually take this value.

The first memory address (start of the memory block) is computed at cycle t3 using an offset;
this value is then stored in the address register. With DB addressing the offset is 4 ∗ (`− 1) + 3
and the first address is ¬offset + rn, where rn is the value of base register and ¬x is the 32-bit
one’s complement of x. In our example (Section 2.1), the offset is 11 and the first address is
rn − 12. On successive cycles the address register is incremented by four (only word access is
supported). The last (write-back) address is computed at cycle t4. With the DB address mode
the write-back address is the same as the first address (i.e. rn − 12), but this is not the case
for all of the other addressing modes.

A 16-bit mask is used to compute the register index used for each data transfer. The
component rp stores the index for the next register to be processed – this is the priority
register. The computation of rp (with two time shifted copies: orp and oorp) is shown below
for our example instruction (op-code 158367750):

is mask mask ∧16 ireg rp orp oorp

t3 1111111111111111 1000000000000110 1
t4 1111111111111101 1000000000000100 2 1
tn 1111111111111001 1000000000000000 15 2 1
tn 0111111111111001 0000000000000000 ⊥ 15 2
tm ⊥ ⊥ ⊥ ⊥ 15

The operation ∧16 represents bitwise conjunction for 16-bit values. The tn cycle lasts for two
cycles – it is repeated until the mask conjunction (column three) is zero. The data transfers
always occur in ascending register index order, irrespective of the addressing mode. Conse-
quently, the priority register is always the lowest index position for a set bit in the conjunction.
If the conjunction is zero then the value of rp is undefined and, consequently, so are the derived
values; undefined values are represented by the symbol ⊥.

In actuality, if ireg[15:0] is zero in a block load then an ARM6 will carry out a load with
register fifteen as the destination register and this will instigate a branch. This is because of
the way in which the index search is implemented in hardware (i.e. it gives the last possible
value, which is fifteen) and the fact that the tm cycle always occurs with block loads. It was
decided not to model this counter intuitive behaviour in the hol specification – instead, the
value of rp is undefined and the control logic has been modified to prevent the load going ahead
in this case – this gives a cleaner programmer’s model specification. The block stores did not
need modifying because the processor naturally avoids storing a value when the list is empty.

In our example there is a load to register fifteen and so a branch will occur. This means
that additional cycles are required for instruction fetch and decode; the instruction will actually
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Table 1: The sub-stages in the ARM6’s block transfer execution. Cycle tn is repeated until the bitwise
conjunction of the mask and ireg[15:0] is zero.

(a) Block loads.

t2 Set mask to 0xFFFF

t3 Fetch an instruction
Increment the program counter
Set areg to the first address

(using reg[Rn] and offset)
Set rp using ireg and mask

Clear rp bit of mask
Set orp to be rp

t4 If write-back enabled then set reg[Rn]
to the last address (using offset)

Load din with mem[areg]

Increment areg

Set rp using ireg and mask

Clear rp bit of mask
Set oorp to be orp

Set orp to be rp

tn Set reg[oorp] to be din

Load din with mem[areg]

Increment areg

Set rp using ireg and mask

Clear rp bit of mask
Set oorp to be orp

Set orp to be rp

tm Set reg[oorp] to be din

Set areg to be program counter value
If bit twenty-two and bit fifiteen of ireg set

then set cpsr to be spsr

Decode the next instruction

(b) Block stores.

t2 Set mask to 0xFFFF

t3 Fetch an instruction
Increment the program counter
Set areg to the first address

(using reg[Rn] and offset)
Set rp using ireg and mask

Clear rp bit of mask
Set orp to be rp

t4 If write-back enabled then set reg[Rn]
to the last address (using offset)

Store reg[orp] to mem[areg]

Increment areg

Set rp using ireg and mask

Clear rp bit of mask
Set orp to be rp

tn Store reg[orp] to mem[areg]

If the last cycle then set areg to the
program counter value and

decode the next instruction
otherwise increment areg

Set rp using ireg and mask

Clear rp bit of mask
Set orp to be rp

fully complete two cycles after the tm cycle.

3.1 A HOL Specification

A hol specification of the ARM6 without block data transfers [6] was extended to cover this
instruction class – most modifications to the previous specification are obvious and do not
merit documenting here. Appendix C presents functions that were new to the specification.

The function NBS specifies the mode change caused by the S flag option i.e. it determines
when the user mode is activated. The mask behaviour (as described in the previous section) is
implemented using the functions MASK, RP and PENCZ. The function MASK defines the state of
the mask – if the next instruction class (nxtic) is a block transfer then the initial mask value is
0xFFFF and on subsequent cycles a single mask bit is cleared using the function CLEARBIT, see
Appendix A. The masking is modelled using natural numbers – this is done simply to avoid
introducing additional operator overloading i.e. by simultaneously loading 16-bit and 32-bit
words theories.

The priority register rp is given by the function RP; this computes the bitwise conjunction
of the register list and the mask, then the lowest set bit is determined using the function

d̀ef LEASTBIT n = LEAST b. BIT b n .

When the register list is exhausted rp takes the value LEASTBIT 0, which is undefined; in
hol this is an unspecified natural number value. The predicate PENCZ holds true only when
this termination condition is met. The function LEASTBIT is not readily executable (i.e. one
cannot evaluate ground terms by adding the definition to a hol compset); this is because
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the LEAST operation introduces non-termination problems. When simulating the ARM6, a
nested-if expansion of LEASTBIT (for all b < 16) is used.

The function OFFSET is used to compute the first and write-back addresses on cycles t3 and
t4. The number of registers in the register list is determined using SUM and BITV (Appendix A).

Thus, the number of registers is
∑15
i=0 bitv(ireg)(i). Depending on the addressing mode (and

the instruction sequence) the offset, its one’s complement, or zero is added to the base register
address; this is implemented by the processor’s ALU.

4 Correctness

The correctness model used for the ARM6 verification has been formalised in hol [5]. The
following sections introduce the models and abstractions that are used in establishing the
ARM6 processor’s correctness.

Store instructions require special attention because they can invalidating the state of a
processor’s pipeline [6]. This problem is heightened by the inclusion of block data transfers.
For example, consider the following fragment of ARM code:

ADR r0, label
STMIA r0, {r1,r2}

label: MOV r3, #10
MOV r4, #12

The first instructions sets register r0 to the label address. The STMIA instruction then stores
registers r1 and r2 to this and the following address, thus overwriting the two MOV instructions.
However, rather than execute the new instructions (i.e. r1 and r2), an ARM6 will actually
execute both of the MOV instructions. These instructions are preserved because they have
entered the pipeline and the processor only flushes the instruction pipeline after a branch
(write to the program counter). Of course, this example has been construed so as expose
the pipeline and hence be unsafe. In practice, it is not worth wasting valuable processor
logic on handling such fundamentally flawed code, and this is the position that was adopted
by the designers of the ARM6. However, from a correctness standpoint, this must be dealt
with. The approach adopted here is to augment the programmer’s model state space with
two 32-bit registers and these hold the op-codes of the fetched and decoded instructions. By
implementing a rudimentary pipeline at the ISA level the correspondence between our models
is easier to establish. The ISA pipeline is really just a buffer: the model still occupies the same
level of temporal abstraction i.e. each cycle always corresponds with the execution of a single
instruction. One criticism that could be made of this approach is that the semantics of the
abstract model is now too concrete when compared with the reference description [18]. On the
other hand, our model is a verified abstraction of the ARM6 and so one can be wholly confident
that it faithfully simulates the processor regardless of the code being executed. However, it is
not a suitable target for other ARM processors because there will be differences with respect to
the unpredictable parts of the programmer’s model. In order to unite the ARM processor family,
one must introduce another level of abstraction and construct a non-deterministic instruction
set model.

4.1 State Functions

The ARM architecture and ARM6 processor are modelled in hol with the following functions:

STATE_ARM_PIPE:num→state_arm_pipe→state_arm_pipe

STATE_ARM6:num→state_arm6→state_arm6

A constructor ARM PIPE extends the programmer’s model state space (state arm) with the
state of the pipeline. The two additional 32-bit words are named ireg and pipe – they form a
simple buffer which is emptied and re-filled when a branch occurs. This enables the ISA model
to simulate ARM6 behaviour when storing data to the addresses pc + 4 and pc + 8.

With the inclusion of the block data transfers, the processor’s state space (state arm6) now
contains three additional components: mask, orp and oorp. For convenience these components
are of type num, but they are more naturally 16-bit and 4-bit values.
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d̀ef DUR_ARM6 (ARM6 mem (DP reg psr areg din alua alub) (CTRL pipea pipeaval .. mshift)) =
let (nzcv,m) = DECODE_PSR (CPSR_READ psr) in
let abortinst = ABORTINST iregval onewinst ointstart ireg nzcv in
let ic = IC abortinst nxtic in
let len = LENGTH (REGISTER_LIST (w2n ireg))
in

if ic = undef then
4

else if ..
..

else if ic = ldm then
2 + (len - 1) + 1 + (if WORD_BIT 15 ireg then 2 else 0)

else if ic = stm then
2 + (len - 1)

else if ..
..

Figure 5: The duration map DUR ARM6.

4.2 Data and Temporal Abstraction

A data abstraction ABS ARM6:state arm6→state arm pipe is defined as follows:

d̀ef ABS_ARM6 (ARM6 mem (DP reg psr areg din alua alub)
(CTRL pipea pipeaval pipeb pipebval ireg iregval ointstart

onewinst opipebll nxtic nxtis aregn nbw nrw sctrlreg psrfb
oareg mask orp oorp mul mul2 borrow2 mshift)) =

ARM_PIPE (ARM mem (SUB8_PC reg) psr) pipeb ireg

The state components are grouped into vectors using five constructors: ARM6, DP (the data
path), CTRL (the processor control), ARM PIPE and ARM. The data abstraction projects out the
pipeline state (pipeb and ireg) and the visible state components (mem, reg and psr). The
function SUB8 PC is used to subtract eight from the ARM6’s program counter value, which is
eight bytes ahead of the address of the instruction being executed.

A uniform immersion [5] specifies the temporal relationship between the cycles of the ARM6
processor and single instruction execution. A function DUR ARM6:state arm6→num specifies
the number of cycles required to complete the execution of an instruction. A fragment of this
function, giving the timings for block data transfers, is shown in Figure 5. The instruction class
(ic) and the length of the register list (len) are used to determine how long the block data
transfer will take. The timings are presented as sums; this splits the execution into distinct
phases. For example, with an LDM instruction the first two cycles are t3 and t4, then there
are `− 1 cycles of tn, followed by one cycle of tm, and finally two extra cycles if the program
counter is in the register list.

This duration function is only valid for processor states in which the pipeline is full i.e. the
first execute cycle is about to commence – the component nxtis must have the value t3. An
initialisation function for the ARM6 is provided in the following section. During verification
one must show that the timings specified above are consistent with passing from one initial
state to another.

4.3 Initialisation

An initialisation function INIT ARM6:state arm6→state arm6 is used to ensure that the pro-
cessor starts in a valid state. This function takes a state and converts it into an initial version
– it is an identity mapping on valid initial states:

d̀ef INIT_ARM6 (ARM6 mem (DP reg psr areg din alua alub) (CTRL pipea pipeaval .. mshift)) =
let nxtic’ = DECODE_INST (w2n ireg) in

ARM6 mem (DP reg psr (REG_READ6 reg usr 15) ireg alua alub)
(CTRL pipea T pipeb T ireg T F T T nxtic’ t3 2 nbw F sctrlreg

psrfb oareg (MASK nxtic’ t3 mask ARB) orp oorp mul mul2 borrow2 mshift)

This function differs significantly from the earlier verification [6] – our ISA model now has
a pipeline and so the pipeline components (pipea, pipeb and ireg) can be initialised with
any values. If these values are not consistent with the instructions in memory (corresponding
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with the current value of the program counter) then conceivably this could be because a store
instruction has just invalidated the pipeline’s state. However, this is not a problem because the
pipeline state is visible at the ISA level, via the data abstraction ABS ARM6. The components
orp and oorp are not altered, but the mask is set using the function MASK – if the next
instruction class is a block data transfer then this will set mask to the value 0xFFFF.

With respect to initialisation, there are three classes of component:

• The visible state components: mem, reg, psr, pipeb and ireg. These components cannot
be altered during initialisation because otherwise correctness would fail at time zero.

• State components whose initial values are of significance. For example, the next instruc-
tion class (nxtic) must be the decoding of the instruction register (ireg).

• State components whose initial values are of no significance. For example, the ALU
registers (alua and alub) can take any values initially.

As a general rule an initialisation function should be as weak as possible i.e. it should only
alter state components that are of the second type. In this context the initialisation represents
an invariant for the design. However, the initialisation function is actually viewed as part of
the design i.e. it is used to define the state function STATE ARM6 and is used when simulating
the processor.

4.4 Correctness Definition

The ARM6 is considered correct if:
Commutativity Theorem

` ∀ t a. STATE_ARM_PIPE t (ABS_ARM6 a) = ABS_ARM6 (STATE_ARM6 (IMM_ARM6 a t) a)

where IMM ARM6 is the uniform immersion with duration function DUR ARM6. To ensure that
the implementation covers all of the specification’s behaviour, one must also show that the
data abstraction is a surjective mapping i.e. each initial specification state must have at least
one initial implementation state that maps to it. This condition is relatively easy to verify for
ABS ARM6 because the operation SUB8 PC has an obvious inverse. The main focus of the formal
verification is, therefore, the commutativity theorem.

5 Formal Verification

The correctness condition presented in Section 4.4 is universally quantified over time (the
natural numbers). Using the one-step theorems [5], it is sufficient to prove that the following
four theorems hold:

1 ` ∀ a. (STATE_ARM6 (IMM_ARM6 a 0) a = a’) ⇒ (INIT_ARM6 a’ = a’)

2 ` ∀ a. (STATE_ARM6 (IMM_ARM6 a 1) a = a’) ⇒ (INIT_ARM6 a’ = a’)

3 ` ∀ a. STATE_ARM_PIPE 0 (ABS_ARM6 a) = ABS_ARM6 (STATE_ARM6 (IMM_ARM6 a 0) a)

4 ` ∀ a. STATE_ARM_PIPE 1 (ABS_ARM6 a) = ABS_ARM6 (STATE_ARM6 (IMM_ARM6 a 1) a)

The first and third theorems are trivial; the main verification effort lies in verifying the second
and forth theorems. Here, the next state function NEXT ARM6 is iterated using FUNPOW, with
the number of iterations given by the map DUR ARM6 ◦ INIT ARM6. The proof proceeds with
case splitting over the instruction class and this normally gives a small constant value for the
number of iterations. However, with the block data transfer instruction class, the duration is a
function of the length of the register list. Exhaustive proof over all of the 216 possible register
lists is not a viable option, especially considering that further case splitting is required for each
combination of addressing mode and the options S, W, L, Rn = 15 and pc in list.

5.1 Approach

In order to verify the block data transfers, invariants are constructed for the iterated tn-phase
of the execution. This phase occurs two cycles into the execution and accounts for `−1 cycles,
where ` is the length of the register list. Three cases must be considered: ` = 0, ` = 1 and
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1 < `. In the first two cases the tn-phase does not occur; with stores this means that the
execution is complete after the t3 and t4 cycles, but with loads completion occurs after the tm
cycle, which will be followed by two extra cycles if the list is {r15}. Therefore, invariants are
only needed when 1 < `.

Let A be the processor’s state space and f : A→ A be the next state function. The state
space has two disjoint subsets Xc = Image(f2, Ic), where Ic is the set of initial states for the
classes c ∈ {ldm, stm}. Induction is used to verify that the functions gc : N×Xc → A have the
property: for all a ∈ Xc, 1 < ` and i < `− 1

gc(i, a) = f i(a) .

The functions gc are a form of invariant; they were constructed manually – an initial definition
was made (guessed at) and this was refined until the final version was proved to be valid.
Functions hc : Xc → A are defined by

hc(a) = f(gc(`− 2, a)) = f `−1(a) .

At cycle `−2 the termination condition is about to be met and so each function hc maps states
in the set Xc to states corresponding with the end of the tn-phase of execution.

Using the functions hc it is now possible to express the state of the processor after com-
pleting the execution of the block data transfers; for all a ∈ Ic the final state is:





f2(a), if c = stm and ` = 0, 1,

hstm(f
2(a)), if c = stm and 1 < `,

f3(a), if c = ldm and ` = 0,

f3(a), if c = ldm and ` = 1 and r15 not in list,

f5(a), if c = ldm and ` = 1 and r15 in list,

f(hldm(f
2(a))), if c = ldm and 1 < ` and r15 not in list,

f3(hldm(f
2(a))), if c = ldm and 1 < ` and r15 in list.

The initial state sets Ic are generated using the initialisation function. Having determined the
state of the processor at the times given by the duration function, it is then necessary to relate
these states to those of the specification. The following sections indicate how the hc functions
were constructed and show how the masking used in the processor model is related to the list
model used in the ISA specification.

5.2 Lemmas about Priority Register Masking

The following functions are defined in hol:

d̀ef GEN_RP wl ireg mask = LEASTBIT (BITWISE wl (∧) ireg mask)

d̀ef MASK_BIT wl ireg mask = CLEARBIT wl (GEN_RP wl ireg mask) mask

d̀ef MASKN wl n ireg = FUNPOW (MASK_BIT wl ireg) n (ONECOMP wl 0)

These function generalise those of the ARM6 specification to an arbitrary mask length wl; this
enables results to be proved by induction over the word length. The function MASKN gives the
nth value of the mask; with our block load example:

` RP ldm (BITS 15 0 158367750) (MASKN 16 0 158367750) = 1

` RP ldm (BITS 15 0 158367750) (MASKN 16 1 158367750) = 2

` RP ldm (BITS 15 0 158367750) (MASKN 16 2 158367750) = 15

` PENCZ (BITS 15 0 158367750) (MASKN 16 3 158367750)

These values correspond with those in the table on page 5.
The ISA level function REGISTER LIST is also generalised to an arbitrary length:

d̀ef GEN_REG_LIST wl a = (MAP SND o FILTER FST) (GENLIST (λb. (BIT b a,b)) wl)

Two key lemmas relate this function with the ARM6 model:
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` ∀ wl ireg. LENGTH (GEN_REG_LIST wl ireg) = SUM wl (BITV ireg)

` ∀ wl ireg n. n < LENGTH (GEN_REG_LIST wl ireg) ⇒
(EL n (GEN_REG_LIST wl ireg) = GEN_RP wl ireg (MASKN wl n ireg))

The first theorem shows that the length of the list is equal to the sum of the constituent bits.
The second theorem shows that nth element of the register list corresponds with the priority
register obtained using the nth mask value. Specialising wl to be sixteen then provides a
connection between the function REGISTER LIST, and the functions RP and MASK. The second
lemma uses the first and it requires some work to prove: GEN REG LIST uses the primitives MAP,
FILTER, GENLIST and BIT; and MASKN uses FUNPOW, LEAST, BITWISE, ONECOMP and BIT.

Another key lemma concerns the termination condition:

` ∀ ic. (ic = ldm) ∨ (ic = stm) ⇒
(∀ a n. n < LENGTH (REGISTER_LIST a) ⇒ ¬PENCZ ic a (MASKN 16 n a)) ∧
∀ a. PENCZ ic a (MASKN 16 (LENGTH (REGISTER_LIST a)) a)

This lemma shows that the termination predicate PENCZ is false up until the `th mask value.

5.3 Block Data Transfers

In the previous section the function REGISTER LIST was related to the ARM6’s implementation,
which uses a 16-bit mask. This section covers the functions LDM LIST and STM LIST. The
following functions are defined in hol:

d̀ef REG_WRITE_RP n reg mode mem ireg first =
REG_WRITE reg mode (RP ldm ireg (MASKN 16 n ireg)) (MEMREAD mem (first + w32 n * w32 4))

d̀ef MEM_WRITE_RP n reg mode mem ireg first =
MEM_WRITE_WORD mem (first + w32 n * w32 4) (REG_READ6 reg mode (RP stm ireg (MASKN 16 n ireg)))

The functions REG WRITE RP/MEM WRITE RP represent the micro-architecture level load/store
operation for the nth word transfered. These are used in the following definitions:

d̀ef (REG_WRITEN 0 reg mode mem ireg first = reg) ∧
REG_WRITEN (SUC n) reg mode mem ireg first =
REG_WRITE_RP n (REG_WRITEN n reg mode mem ireg first) mode mem ireg first

d̀ef (MEM_WRITEN 0 reg mode mem ireg first = mem) ∧
MEM_WRITEN (SUC n) reg mode mem ireg first =
MEM_WRITE_RP n reg mode (MEM_WRITEN n reg mode mem ireg first) ireg first

The functions REG WRITEN/MEM WRITEN give the nth state of the register-bank/memory while
performing a block load/store; they are used in constructing and validating the gc functions
in Section 5.1. The final state of the register-bank or memory – as given by the functions hc
– is obtained when the first argument is `. The following lemmas relate these definitions with
LDM LIST and STM LIST:

` ∀ P U base mem reg mode.
LDM_LIST mem reg mode (FST (ADDR_MODE4 P U base ireg)) =
REG_WRITEN (LENGTH (REGISTER_LIST ireg)) reg mode mem ireg

(FIRST_ADDRESS P U base (WB_ADDRESS U base (LENGTH (REGISTER_LIST ireg))))

` ∀ P U base mem reg mode.
STM_LIST mem (SUB8_PC reg) mode (FST (ADDR_MODE4 P U base ireg)) =
MEM_WRITEN (LENGTH (REGISTER_LIST ireg)) reg mode mem ireg

(FIRST_ADDRESS P U base (WB_ADDRESS U base (LENGTH (REGISTER_LIST ireg))))

The first element of ADDR MODE4 is a list of register indices paired with memory addresses (see
Section 2.2). The lemmas show that applying the list folding operations LDM LIST/STM LIST

to this list is equivalent to applying REG WRITEN/MEM WRITEN with appropriate arguments.
The second lemma accounts for the possibility of storing the program counter. The func-

tion STM LIST uses REG READ to access the registers, whereas MEM WRITEN uses REG READ6; the
former adds eight to the program counter value, but this is countered by the data abstraction
which applies SUB8 PC. With load instructions, a series of additional lemmas are required to ma-
nipulate (normalise) various combinations of register updates (generated by the pc-increment,
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write-back, block load and data abstraction operations) and these must take account of whether
or not the fifteenth bit of the instruction register is set.

The first address is expressed using the function FIRST ADDRESS; the ARM6 uses the ALU
and an offset to compute this value. The following lemma shows that this computation is
correct:

` ∀ ireg ic base c borrow2 mul.
1 ≤ LENGTH (REGISTER_LIST (w2n ireg)) ∧
((ic = ldm) ∨ (ic = stm)) ⇒
(FIRST_ADDRESS (WORD_BIT 24 ireg) (WORD_BIT 23 ireg) base

(WB_ADDRESS (WORD_BIT 23 ireg) base (LENGTH (REGISTER_LIST (w2n ireg)))) =
SND (ALU6 ic t3 ireg borrow2 mul (OFFSET ic t3 ireg (WORD_BITS 15 0 ireg)) base c))

There is a similar lemma to show that the computation of the write-back address, at cycle t4,
is also correct.

5.4 Summary

The formal verification makes use of one-step theorems [5]. The two main verification con-
ditions (theorems two and four on page 9) are tackled using case splitting and the simplifier
(term-rewriting). The first level of case splitting is on the instruction class; this means that
pre-existing parts of the proof script [6] are used without major alteration.3 The ARM6 im-
plementation of the block data transfers is symbolically executed using functions hc; temporal
induction is used to prove that these functions evaluate the tn-phase of execution (Section 5.1).
Seven sub-cases are listed in Section 5.1, however, further case splitting is used to reason about
particular instruction variants (e.g. with write-back, user mode access or when restoring the
CPSR; and also whether the first register of a block store is the base register). The resultant
processor states are expressed using functions REG WRITEN and MEM WRITEN; these are shown
to be related to the function LDM LIST and STM LIST using lemmas about priority register
masking (Sections 5.2 and 5.3). These and other lemmas are used to relate processor states
with those given by the ISA specification.

By including the pipeline state at the ISA level, there was no need to explicitly consider
the special cases of writing to the memory addresses pc + 4 and pc + 8. Using the no-clobber
or data forwarding methods [6] would have added to the verification effort.

With the size and complexity of the ARM6 model, it is quite easy for the proof run-times
and terms (representing the state of the processor) to become very large. Generating lots of
sub-goals, possibly containing large terms, inevitably burdens the individual carrying out an
interactive proof. This is mitigated by structuring the proof with the use of lemmas and by
being careful in choosing when and how to case split. The method of state evaluation is also
of significance; one must decide when to – or, more importantly, not to – expand with a given
function definition. Call-by-value conversion is used when evaluating the next state function
but this is then combined with the simplifier, which provides contextual re-writing. Although
the complexity of the design must be managed it is not an overwhelming problem. The script
files for the block data transfer lemmas and the main proof (covering all of the instruction
classes) are both approximately a thousand lines long. The overall proof run-time is in the
order of a few minutes.

6 Conclusion

This paper has described the work that was involved in extending a partial ARM6 verifi-
cation [6] to include the block data transfer instruction class. The hol proof system has
been used to construct a concise programmer’s model formalisation for this class; this is
based on using standard list operations, which are provided in the standard hol distribution.
Daniel Schostak’s specification was used as the basis for the hol model of the ARM6 micro-
architecture. The implementation’s execute stage is multi-cycled, with a block load taking up
to twenty cycles to complete. The instruction timing is determined by the number of registers
to be transferred and this is specified by a duration map. In previous verification work with

3Some changes were made with the inclusion of the pipeline state at the ISA level. In particular, the single
data store proof became simpler.
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micro-programmed and pipelined designs [5, 6] the processor control logic has been sufficiently
simple that the duration for each instruction is a known constant value. Therefore, additional
verification techniques have had to be employed in order to reason about the correctness of
the block data transfers. In particular, it was necessary to use induction over time to establish
the behaviour of the processor during a sub-stage of the execution. This sub-stage is preceded
by two cycles (forming an initial state precondition) and the instruction may complete up to
three cycles afterwards. In order to relate the list model with the masking method, a number
of auxiliary functions were defined; these enabled inductions to be carried out on the register
list length. Functions were defined so as to directly specify the state of the processor part way
through the iterated tn-phase of execution. This paper has presented a number of key lemmas
that were used in relating the two different models. The LEAST operator was used in specifying
the next register to be transfered by the processor; hol provides a few handy theorems for
reasoning about this operator.

This work has demonstrated that the verification strategy (based on symbolic execution)
is well suited to adding further instructions to a verified processor design. It was a relatively
straightforward task to modify the processor and instruction set models, and much of the pre-
existing proof scripts needed little or no modification. This point has been further demonstrated
with the verification of the multiply instruction class. The proof run-time for the verification
of the block data transfers is longer than for most other instruction classes, but the overall
run-time has only increased proportionately i.e. the proof run-time is essentially linear with
respect to the number of instruction classes.

To completely verify a commercial processor design one will inevitably have to tackle com-
plex instruction classes such as the block data transfers. This may entail verifying that in-
variants hold during given phases of instruction execution. This has been shown to be feasible
with the hol model of the ARM6. All core instruction classes have now been verified.
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Appendix

A Primitive Operations

d̀ef BITS h l n = n MOD 2SUC h DIV 2l

d̀ef BIT b n = (BITS b b n = 1)

d̀ef WORD_BITS h l n = BITS h l (w2n n)

d̀ef WORD_BIT b n = BIT b (w2n n)

d̀ef BITV n b = BITS b b n

d̀ef SBIT b n = (if b then 2n else 0)

d̀ef (BITWISE 0 op x y = 0) ∧
BITWISE (SUC n) op x y = BITWISE n op x y + SBIT (op (BIT n x) (BIT n y)) n

d̀ef ONECOMP wl n = 2wl - 1 - n MOD 2wl

d̀ef CLEARBIT wl b a = BITWISE wl (∧) a (ONECOMP wl 2b)

d̀ef (SUM 0 f = 0) ∧ SUM (SUC m) f = SUM m f + f m

d̀ef (∀ f e. FOLDL f e [] = e) ∧ ∀ f e x l. FOLDL f e (x::l) = FOLDL f (f e x) l

d̀ef (∀ f. MAP f [] = []) ∧ ∀ f x l. MAP f (x::l) = f x::MAP f l

d̀ef (∀ P. FILTER P [] = []) ∧ ∀ P h t. FILTER P (h::t) = (if P h then h::FILTER P t else FILTER P t)

d̀ef (∀ l. EL 0 l = HD l) ∧ ∀ n l. EL (SUC n) l = EL n (TL l)

d̀ef (ZIP ([],[]) = []) ∧ ∀ x1 l1 x2 l2. ZIP (x1::l1,x2::l2) = (x1,x2)::ZIP (l1,l2)

d̀ef (∀ x. SNOC x [] = [x]) ∧ ∀ x x’ l. SNOC x (x’::l) = x’::SNOC x l

d̀ef (∀ f. GENLIST f 0 = []) ∧ ∀ f n. GENLIST f (SUC n) = SNOC (f n) (GENLIST f n)
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B ISA Specification

d̀ef REGISTER_LIST n = (MAP SND o FILTER FST) (GENLIST (λb. (BIT b n,b)) 16)

d̀ef ADDRESS_LIST start n = GENLIST (λa. start + w32 (4 * a)) n

d̀ef WB_ADDRESS U base len = (if U then $+ else $-) base (w32 (4 * len))

d̀ef FIRST_ADDRESS P U base wb =
if U then if P then base + w32 4 else base else if P then wb else wb + w32 4

d̀ef ADDR_MODE4 P U base n =
let reg_list = REGISTER_LIST n in
let len = LENGTH reg_list in
let wb = WB_ADDRESS U base len in
let addr_list = ADDRESS_LIST (FIRST_ADDRESS P U base wb) len
in (ZIP (reg_list,addr_list),wb)

d̀ef LDM_LIST mem reg mode bl_list =
FOLDL (λreg’ (rp,addr). REG_WRITE reg’ mode rp (MEMREAD mem addr)) reg bl_list

d̀ef STM_LIST mem reg mode bl_list =
FOLDL (λmem’ (rp,addr). MEM_WRITE_WORD mem’ addr (REG_READ reg mode rp)) mem bl_list

d̀ef DECODE_LDM_STM n = (BIT 24 n,BIT 23 n,BIT 22 n,BIT 21 n,BIT 20 n,BITS 19 16 n,BIT 15 n)

C Addendum to the ARM6 Specification

d̀ef NBS ic is ireg m =
if WORD_BIT 22 ireg ∧

(((is = tn) ∨ (is = tm)) ∧ (ic = ldm) ∧ ¬WORD_BIT 15 ireg ∨
((is = t4) ∨ (is = tn)) ∧ (ic = stm))

then
usr

else
DECODE_MODE m

d̀ef MASK nxtic nxtis mask rp =
if (nxtic = ldm) ∨ (nxtic = stm) then

if nxtis = t3 then ONECOMP 16 0 else CLEARBIT 16 rp mask
else

ARB

d̀ef RP ic list mask =
if (ic = ldm) ∨ (ic = stm) then

LEASTBIT (BITWISE 16 (∧) list mask)
else

ARB

d̀ef PENCZ ic list mask =
if (ic = ldm) ∨ (ic = stm) then

BITWISE 16 (∧) list mask = 0
else

ARB

d̀ef OFFSET ic is ireg list =
if (is = t3) ∧ ((ic = ldm) ∨ (ic = stm)) then

if WORD_BIT 23 ireg then
w32 3

else if WORD_BIT 24 ireg then
w32 (4 * (SUM 16 (BITV list) - 1) + 3)

else
w32 (4 * (SUM 16 (BITV list) - 1))

else if (is = t4) ∧ ((ic = ldm) ∨ (ic = stm)) then
w32 (4 * (SUM 16 (BITV list) - 1) + 3)

else if (is = t5) ∧ ((ic = br) ∨ (ic = swi_ex)) then
w32 3

else
ARB
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