
Improved Tool Support for Machine-Code
Decompilation in HOL4

Anthony Fox

University of Cambridge, UK

Abstract. The HOL4 interactive theorem prover provides a sound logi-
cal environment for reasoning about machine-code programs. The rigour
of HOL’s LCF-style kernel naturally guarantees very high levels of as-
surance, but it does present challenges when it comes implementing effi-
cient proof tools. This paper presents improvements that have been made
to our methodology for soundly decompiling machine-code programs to
functions expressed in HOL logic. These advancements have been facili-
tated by the development of a domain specific language, called L3, for the
specification of Instruction Set Architectures (ISAs). As a result of these
improvements, decompilation is faster (on average by one to two orders
of magnitude), the instruction set specifications are easier to write, and
the proof tools are easier to maintain.

Traditional formal software verification has primarily focussed on developing and
using formalisations of high-level programming languages, with formal reason-
ing occurring at the level of the programmer. However, in some high-assurance
applications, such language formalisations could be too abstract or unrealistic,
and the trustworthiness of compilers may come into play. These issues can be
addressed by using a verified compiler, see [9] and [8]. However, an alternative
approach is to work directly with machine-code, which could be generated by
any compiler for a particular platform. This has the advantage that one does
not have to formalise the semantics of high-level source languages, and formal
reasoning relates more directly to the code that is actually being run. The suc-
cess of this approach hinges upon the ability to accurately formalise a processor’s
instruction set and on the ability to overcome the challenges of working with low-
level code, which is less structured and replete with platform specific details. To
this end, Magnus Myreen has developed an approach for soundly decompiling
machine-code using the HOL4 interactive theorem prover, see [12].

Commercial instruction set architectures are large and complex, with refer-
ence manuals running to thousands of pages in length.1 We use the L3 domain
specific language to formally specify ISAs, see [4]. Details of our current ISA
formalisations can be found in Sections 2 and 8. Each architecture has its own
idiosyncrasies, which must be accommodated when writing proof automation for
a theorem prover. In this paper our main working instruction set is ARMv7-A

1 For example, 2736 pages for ARMv7-A, 5242 pages for ARM-v8 (which contains a
full description of the legacy AArch32 mode) and 3020 pages for x86.



2

but we also support other architectures.2 In particular, we have recently added
support for the new 64-bit ARMv8 architecture.

Papers [12] and [13] of Myreen et al. present proof tools for decompiling
machine-code programs into logic using the HOL4 interactive theorem prover.
The second paper (from 2012) presented a new version of this proof-producing
decompiler, which provided significant improvements in the speed of decompila-
tion. Benchmark figures showed that the overall run time had become dominated
by model evaluation, i.e. the time taken to generate Hoare triples that capture
the semantics of each individual machine-code instruction. These Hoare triples
take the form of spec theorems, which provide an interface between ISA models
and the decompiler, see Section 1. This paper presents substantial improvements
in our treatment of ISA specification and model evaluation. The techniques pre-
sented here supersede those of [5]. For comparison purposes, updated benchmark
figures are provided in Section 7 for the examples listed in [13]. The HOL4 tools
for generating spec theorems have been enhanced to be roughly one hundred
times faster than previous versions (those presented in [5]). This speedup comes
from utilising dynamic databases of generic spec theorems, which capture the se-
mantics of multiple instruction instances (for multiple operating modes). These
theorems are derived by partially evaluating ISA models, see Sections 3 and 4.

The improvements described in this paper have made it more tractable to
work with larger machine-code programs. The largest decompilation undertaken
to date has been for the seL4 microkernel (see [15]), where the code size is roughly
12,000 ARM instructions. Our models have also been used by other organisations
and research groups, including at the KTH Royal Institute of Technology, see [2].

The approach described here has matured to the point where specifying a new
ISA, and linking the generated HOL model to the decompiler, is mostly routine.
Experience indicates that the effort of supporting a new ISA is split almost evenly
between model development (in L3) and implementing tool support (in HOL4).
For simple RISC architectures, such as MIPS, preliminary support (without
model validation) has been provided within a few weeks. Although our tools
have been implemented in HOL4, the overall approach is applicable to other
LCF-style provers, such as HOL Light, Isabelle/HOL and ProofPower.

1 Decompilation of Machine-code to HOL Logic

In [12] Myreen describes methods for soundly decompiling machine-code into
HOL functions. The decompiler outputs a collection of definitions, as well as
a certificate theorem, which proves that the definitions correctly capture the
semantics of the supplied machine-code. For example, the ARM code

e0010291 (* loop: mul r1, r1, r2 *)
e2500001 (* subs r0, r0, #1 *)
1afffffc (* bne loop *)

2 L3 specifications are available at www.cl.cam.ac.uk/~acjf3/l3/isa-models.tar.

bz2 and the HOL4 developments can be viewed at the Github repository github.

com/HOL-Theorem-Prover/HOL under the directory examples/l3-machine-code.



3

is decompiled into the following HOL function:3

power (r0,r1,r2) =
let r1 = r1 * r2 in
let r0’ = r0 - 1w
in
if r0 = 1w then (r0’,r1,r2) else power (r0’,r1,r2)

Certificate theorems are instances of a total correctness Hoare triple assertion
SPEC model p code q, see [12]. The certificate theorem for our example is

⊢ SPEC ARM_MODEL
(~aS * arm_OK m * arm_PC p * arm_REG (R_mode m 0w) r0 *
arm_REG (R_mode m 1w) r1 * arm_REG (R_mode m 2w) r2 *
cond (power_pre (r0,r1,r2)))

{(p,0xE0010291w); (p + 4w,0xE2500001w); (p + 8w,0x1AFFFFFCw)}
(let (r0,r1,r2) = power (r0,r1,r2)
in

~aS * arm_OK m * arm_PC (p + 12w) * arm_REG (R_mode m 0w) r0 *
arm_REG (R_mode m 1w) r1 * arm_REG (R_mode m 2w) r2)

Here ARM_MODEL is a 5-tuple that incorporates an ARM semantics relation. A set
(the code pool) associates memory addresses with machine-code values. The pre-
and post-conditions (p and q) are split into assertions, combined using Myreen’s
machine-code logic separating conjunction operator (*), see [12]. For example,

arm_OK m * arm_PC (p + 12w) * arm_REG (R_mode m 0w) r0

asserts that the program-counter has value p + 12w and the zeroth general-
purpose register (R_mode m 0w) has value r0. The processor mode is constrained
to be valid with the assertion arm_OK m, e.g. m = 16w (user mode) is valid.

The decompiler works by deriving and composing SPEC theorems for single
machine-code instructions. The semantics of each instruction is determined by
symbolically evaluating the next-state function of an ISA. This is implemented
in HOL with step and spec tools, which are described in Sections 3 and 4. This
paper focusses on improvements made to the ISA models and associated model
evaluation tools. A list of these improvements is contained in Table 1.

The implementation of ISA specific step and spec tools – which effectively
link ISA models to the decompiler – is aided through the use of special purpose
HOL libraries. The primitive assertion predicates (such as arm_REG) and asso-
ciated lemmas are now automatically generated by a tool which examines the
state type of the ISA. This automation makes it much easier to accommodate
changes to specifications and to support new ISAs. However, the process of de-
veloping ISA specific tools is not fully automatic. An understanding of each ISA
is required, and there are places where cognisant choices are made, i.e. which
parts of the ISA model are pertinent. Näıve symbolic evaluation of sizeable ISA
formalisations typically leads to the generation of unwieldy terms (perhaps tak-
ing minutes to compute in HOL). Also, it is frequently necessary to manually
prove simplification rewrites, as steadfastly following ISA reference manuals can
result in unwanted expressions arising within assertions and decompiler output.

3 This computes r1 := r1 * pow(r2, r0). Note that 1w denotes a machine word
(bit-vector) with value one.



4

Table 1. Comparison of the old and new approaches.

Old New

Specification
and Formal
Model

Native HOL using a
state-transformer monad with
exceptions.

Specified in an imperative style
using the L3 domain specific
language. The exported HOL
models employ let-expressions
and have an ‘exception status’
state component. [See Section 2]

Step Tool Requires a full machine-code
value (opcode). Evaluates the
instruction set model directly.
The ARM step tool employs a
call-by-value based conversion.

Mainly based on machine-code
bit-patterns (named
instructions). Uses a database
of pre-computed ‘instruction
semantics’ theorems, with the
step theorem being derived
using HOL’s MATCH_MP rule.
[See Section 3]

Spec Tool State assertions and associated
theorems are all defined and
proved manually. The theorems
are based on concrete opcode
values. The derivation tactic is
hard-coded for each ISA.

Assertions are automatically
defined and various theorems
are automatically derived.
Supports generic Hoare triples,
based on instruction
bit-patterns. The derivation
tactic is customisable, so as to
support multiple ISAs.
[See Section 4]

Improved
Decompiler
Support [13]

The Hoare triple theorems are
derived direct from step
theorems. This derivation is
hard-coded for each ISA.

The triple theorem derivation
uses spec theorems. This
method is generic (readily
customisable), so it is easy to
support new ISAs.
[See Section 5]

Assembly Code
Support

Written mostly in Standard ML,
using a parser generator or
parser combinators.

Mostly written in L3, with a
small amount of Standard ML.
[See Section 6]

ISAs ARMv4 through to ARMv7,
PowerPC, x86-32, x86-64.

ARMv4 through to ARMv7,
ARMv6-M, ARMv8, x86-64,
MIPS, CHERI. [See Section 8]



5

2 ISA Specification using L3

The domain specific language L3 [4] provides an effective means to specify and
maintain a diverse selection of instruction set models. The language has been
designed to be simple and intuitive, with specifications being compact and easy
to comprehend. To date, L3 models have been exported to HOL4, Standard ML,
Isabelle/HOL and TSL [10].

The primary component of a formal ISA specification is a next-state function,
which defines the architecture’s operational semantics at the programmer’s model
level. One machine-code instruction is run for every application of the next-state
function. A HOL4 formalisation of the ARMv7 architecture was presented in [5].
This model was based on defining a state-transformer monad (with exceptions)
directly in HOL. Our new L3 source specifications now look much more like
the pseudo-code found in architecture reference manuals. The exported HOL4
version is treated as a reference formal specification (trusted model), whereas
exported SML code is used to implement emulators and assemblers. There is no
formal or verified connection between each of these models. We primarily carry
out model validation with respect to the trusted HOL model, typically using step
tools to determine the behaviour of machine-code instructions (see Section 3).
Additional validation and development work may be performed using the much
faster ML-based emulators. In particular, our MIPS model is now capable of
booting FreeBSD, see Section 8. This emulation work has also demonstrated
that L3 models are well suited to rapidly prototyping new architectural designs.

Two styles of HOL specification can be exported from L3: one uses a generic
state-transformer monad; and the other uses let-expressions, which directly ma-
nipulate (pass through) the state of the architecture. The monadic style is suited
to security oriented proofs, such as [2]. This paper is primarily concerned with
the let-expression style, since this is the version that is used by the decompiler.
The following two sections describe this new style of specification.

Model Exceptions Model exceptions4 are normally used to handle various
instances of unpredictable (under-specified) behaviour.5 With the use of L3, our
treatment of model exceptions has changed so as to make it easier to write
efficient automated proof tools.

In our old monadic approach, the type of each (impure or state transforming)
operation is roughly:

[args →]state → (value × state) + exception

where + denotes the disjoint union type operator and square parenthesis are
used to indicate an optional type component. Such operations either return a

4 This should not be confused with ISA exceptions (e.g. software interrupts), which
are typically modelled explicitly, following the ISA reference manual semantics.

5 The ARM manual describes the unpredictable as meaning “the behaviour cannot be
relied upon”. For example, the shift instruction ASR r1,r2,pc is unpredictable.



6

value together with an updated state, or they return an exception value. A
monadic bind operation (>>=) is used to compose sequential computations. Note
that performing symbolic evaluation in the context of >>= frequently leads to
the generation of unwieldy terms, since the bind definition includes a case split
over the value-state (exception free) and exception cases.

The following operation type is used in L3 generated models:

[args →]state ′ → value × state ′

where state ′ = state[×exception-status]. The range now consists of a value paired
with a state, which may incorporate an exception status component. The value
and state parts of the result should be regarded as meaningless when an ex-
ception occurs, which is flagged using the exception status component of state ′.
Although this representation is less principled – since junk values and states are
returned when an exception has occurred – it does have the advantage that we
can express operational semantics using a standard state-transformer monad or
using ordinary let-expressions. This makes the generated models easier to work
with.

Example Specification Consider the following pedagogical L3 specification:

exception UNPREDICTABLE {- declare a new exception type -}

declare { A :: bits(8), B :: bits(8) } {- global variables -}

bits(8) example (c :: bits(8)) =
{

A <- B; {- assignment -}
when A < 4 do #UNPREDICTABLE; {- raise an exception -}
return (A * c + 1)

}

This L3 specification declares a new model exception UNPREDICTABLE, two global
state components A and B, and a unary function example. The generated HOL
script for this specification defines the following function:

example c =
(λstate.

(let s = state with A := state.B in
let s = if s.A < 4w then SND (raise’exception UNPREDICTABLE s)

else s
in

(s.A * c + 1w,s)))

Note that the state is explicitly modified using let-expressions. A record type is
used, with state components A and B being sub-fields of the global state. The
helper function raise’exception is used to tag the state when an exception
occurs (it ensures earlier exceptions are not overridden).



7

3 Model Evaluation: Step Theorems

A step tool uses forward proof to derive a theorem that characterises the next-
state behaviour of a particular instruction. In [5], step theorems are of the form:

⊢ ∀s. P (s) ⇒ (next(s) = SOME (f0(f1(. . . fn(s)))))

where s is a state and predicate P consists of various conjuncts, usually includ-
ing assertions of the from mem(pc + i) = bi for i ∈ 0, . . . , 3. Each byte bi forms
part of the machine-code opcode of the instruction being run, which is located in
memory mem at the program-counter address pc. Other clauses determine the
operating mode, e.g. big- or little-endian byte ordering and so forth. Additional
clauses are also required to avoid unpredictable or undesired behaviour; for ex-
ample, we assert that the program-counter address is word aligned (divisible
by four). The functions fi denote state updates for particular components; for
example, one function might write a value to a register. The next-state function
returns an option type, which is a standard HOL datatype.6

Generic step theorems. With the move to L3 specifications, we now use step
theorems of the form:

P0, . . . , Pn ⊢ next(s) = SOME (s with . . . ) .

The hypotheses Pi correspond with clauses of the old spec theorem predicate P .
The ‘with’ syntax denotes updates to a record, e.g. the next-state might be

s with pc := s.pc + 4 .

Here the program-counter is updated so as to point to the next instruction in
memory. A key improvement is that we now generate step theorems that are not
restricted to concrete (ground) machine-code opcodes. Instead, each byte of the
fetched instruction can be represented by a list of Booleans, which form part of
the instruction’s opcode pattern. For example, the four bytes for the ‘Multiply
Accumulate’ instruction MLA (with little-endian ordering) are

i=0 v2w [T; F; F; T; x13; x14; x15; x16]

i=1 v2w [x5; x6; x7; x8; x9; x10; x11; x12]

i=2 v2w [F; F; T; F; x1; x2; x3; x4]

i=3 v2w [T; T; T; F; F; F; F; F]

Here T represents true, F is false and the HOL function v2w : bool list → word8
constructs a bit-vector from a list. Variables are used to encode register and
immediate argument values, as well as various instruction configuration options.
A particular instance of this ARM instruction is MLA r1, r2, r3, r4, which
has opcode 0xE0214392. This instance corresponds with the substitution:

x1, x2, x3, x4 7→ F, F, F, T, (r1) x5, x6, x7, x8 7→ F, T, F, F, (r4)

x9, x10, x11, x12 7→ F, F, T, T, (r3) x13, x14, x15, x16 7→ F, F, T, F (r2) .

6 A state option value is either NONE (when there is an exception) or otherwise it is
SOME s for some state s. We are only interested in exception free cases here.



8

This substitution effectively specialises the instruction pattern for our instruction
instance (choice of registers), i.e. r2 * r3 + r4 is written to register r1.

By developing tools that generate generic step theorems (which represent
partial evaluations of a next-state function with respect to opcode bit-patterns),
we are then able to derive generic spec theorems, i.e. Hoare triples for a class of
instructions. This generalisation provides a means to greatly speed-up the model
evaluation phase of decompilation. Rather than generate Hoare triple theorems
from scratch for every machine-code opcode (which is expensive), we can instead
dynamically build up a database of generic triples that can be quickly specialised
when needed.

Derivation. Generic step theorems are derived using HOL’s MATCH_MP rule.7

For ARM, we first derive antecedent theorems (roughly) of the form:

F0, . . . , Ff ⊢ Fetch(s) = (v, s0) (1)

D0, . . . , Dd ⊢ DecodeARM(v, s0) = (ast , s1) (2)

⊢ ∀s. Run(ast)(s) = defn(x)(s) (3)

I0, . . . , Ii ⊢ defn(x)(s1) = s with . . . (4)

which together imply the following step theorem

F0, . . . , Ff , D0, . . . , Dd, I0, . . . , Ii ⊢ NextARM(s) = SOME (s with . . . ) . (5)

In the above, v represents a machine-code bit-pattern; ast is an instruction
datatype value; x is an instruction’s arguments (e.g. register indices and imme-
diate values); and defn represents an instruction semantics function. The various
hypotheses relate to different stages of execution, e.g. the F hypotheses assert
that the bytes of the opcode v are located in main memory, starting at the
program-counter address.

The functions Fetch, DecodeARM, Run and NextARM all come from the current
L3 specification of ARM. Eqs. (1) to (4) deconstruct the next-state function
NextARM, and the implication above is proved in HOL with a one-off theorem.
Similar theorems are proved for each ISA that we support. It is hard to fully
automate the process of decomposing next-state specifications, so as to construct
and verify suitable MATCH_MP theorems. These theorems are very architecture
specific, for example, the MIPS theorems have to take the branch-delay slot into
consideration and the x86 model has to accommodate variable width instruction
opcodes and an instruction cache.

In deriving a step theorem for a particular instruction class (bit-pattern),
various parts of Eqs. (1) to (4) are specialised, prior to applying the MATCH_MP

rule. For example, for a particular instruction instance the semantics function
defn might be dfn’StoreByte or dfn’MultiplyLong and Eq. (4) will give the

7 This is the Modus Ponens inference rule with automatic matching. For example,
given a theorem A0 ⊢ t1 ∧ · · · ∧ tn ⇒ t0 and a list of theorems A1 ⊢ t1, . . . , An ⊢ tn,
we can use this rule to derive A0, . . . , An ⊢ t0.



9

next-state semantics for that type of instruction. Eqs. (1) and (3) can be readily
derived on the fly for any particular opcode bit-pattern. Eqs. (2) and (4) are
precomputed for a fixed set of supported instruction bit-patterns. These theorems
are stored in databases that are based on Michael Norrish’s LVTermNet structure,
which implements local variable term nets.8 Using this method, the resulting step
tool is extremely efficient. The four antecedent theorems can be deduced very
quickly (since database lookup does not require any additional logical inference)
and an application of MATCH_MP rule is fast as well.

The practicability of this new approach hinges upon the ability to precom-
pute all of the required instruction semantics theorems (instances of Eq. (4)) in
an “acceptable” amount of time. The ARM model is complex and, at the time of
writing, there are 318 of these theorems. They are produced by expanding defi-
nitions to a canonical form that consists of primitive state (record field) updates.
This symbolic evaluation involves: considering instruction sub-cases; eliminating
let-expressions, avoiding unpredictable cases (by adding new conditions to the set
of hypotheses); and applying simplifications. A custom tool has been developed
to aid this process. Where appropriate, simplification rules are manually iden-
tified and verified, e.g. they may involve reasoning about machine arithmetic
and bit-vector manipulations. Here, HOL4’s bit-blasting procedure for decid-
ing bit-vector problems is of great use, see [3]. The HOL library arm stepLib

implements the ARM step tool; it consists of 4014 lines of hand-written code
and takes just under two minutes to build. This library uses theorems from
arm stepTheory, which is built using 1498 lines of hand-written proof script.

4 Model Evaluation: Machine-Code Hoare Triples

A spec tool derives spec theorems (Hoare triples) for machine-code instructions.
The performance of these tools has been greatly enhanced through the use of
generic spec theorems, which can be instantiated to obtain triples for concrete
opcodes (where instruction arguments become fixed). This new approach is il-
lustrated in Fig. 1. A feature of this algorithm is that it incorporates a form of
memoization. The performance of the tool improves with use, since the costly
“no” branch in Fig. 1 only occurs when new instruction types are encountered.

Multiple generic spec theorems (up to sixteen for ARM) are derived for
each generic step theorem. These theorems cover various instruction forms, e.g.
MOV Rm, Rn (with Rm ̸= Rn) and MOV Rm, Rm are distinct forms. The pre- and
post-conditions are determined by syntactically examining the supplied step the-
orem. The spec theorem derivation is based on using a carefully crafted tactic; see
HOL/examples/l3-machine-code/common/stateScript.sml for an overview of
the approach and for proofs of key lemmas.

The ‘reject vacuous’ stage in Fig. 1 is used to select the appropriate spe-
cialised spec theorems. In practice, we also apply post-processing stages, which
support different state assertions, e.g. viewing registers and/or memory as maps.

8 These are a form of discrimination net. A similar structure Net (credited to Larry
Paulson) has been used for many years in HOL’s term-rewriting conversions.



10

Assemble Code
(parse & encode)

Look up
instruction’s
bit-pattern

Assembly
Code Input

Machine-code
Input

Find
matching
generic
spec

theorems?

Generate
generic step
theorems

Derive generic
spec theorems
and add them
to database

Specialise and
simplify spec
theorems†

Reject vacuous
theorems

Spec theorem
Output

no

yes

Fig. 1. Generation of spec theorems. †Note that theorem specialisation is fast and the
simplification phase has been fine-tuned for performance.

To illustrate the improvements in performance, consider the ‘Store Regis-
ter Dual’ instruction STRD r0, r1, [r2, r3]!, which has opcode 0xE1A200F3.
The timings for this instruction (on a 3.4GHz Core i7, 32GB) are as follows:

Old step tool: 0.35 s
Old spec tool: 2.54 s

New step tool ("STRD (+reg,pre,wb)" instruction class): 0.0017 s
New spec tool (first call): 0.91 s
New spec tool (subsequent calls within class): 0.0027 s

5 Supporting the Improved Decompiler

The improved decompiler [13] uses a new Hoare triple predicate, wherein the
pre- and post-condition assertions are more hardwired, i.e. fixed for a particular
(manually determined) processor configuration and state ‘view’. The uniformity
of these triple theorems helps in speeding up the decompilation process. A tool
has been developed to derive triple theorems from spec theorems. There is a
small overhead (typically a few thousandths of a second) for this conversion. As
such, it is relatively easy to support both versions of the decompiler.

6 Assembly Code Support

When working with an instruction set model, it is helpful to provide support for
some standard assembly code representation of instructions (which humans can
more readily comprehend). In particular, it is useful to be able to input assembly



11

code programs (or single instructions) and then output machine-code opcodes.
We achieve this by implementing light-weight assemblers, which consist of two
parts: a parser, which maps assembly code syntax (strings) into an instruction
datatype (AST); and an encoder, which maps instruction datatype values into
machine-code opcodes. We also define pretty-printers, which map instruction
datatype values back into assembly code syntax (strings). An example of these
mappings is shown below for an ARM load-multiple instruction:

AST: (14, Load (LoadMultipleExceptionReturn (T,F,T,1,112))

Hex: 0xE8F18070 Assembly: LDM r1!,{r4-r6,pc}^

decode

encode

print

parse

Round-trip validation is used to test the consistency of the decode, encode,
parse and print specifications; this is illustrated below.

Opcode Instruction AST
Assembly
code string

Instruction AST

decode print

parseencode
?

A successful round-trip occurs when the opcode produced by the encoder is the
same as an initial opcode. Note that the original opcode may not be ‘canonical’
(e.g. ARM immediate values do not have unique encodings) — in such cases the
round-trip will fail and a check is made on whether the abstract syntax for the
two instructions (from decoding and parsing) are equivalent. This approach has
been highly effective in terms of detecting inconsistencies and bugs in instruc-
tion representation logic. The parsing and encoding logic has also been checked
laboriously with test vectors, e.g. to ensure that syntax and bounds errors are
handled correctly.

We have found little need for assembly code parsers and pretty-printers to
be formalised within a theorem prover, since we normally work directly with
machine-code opcodes when considering the semantics of low-level programs. As
such, these components are implemented at the meta-level using Standard ML.
There are some use cases for formalised instruction encoders, as these can be
used in compiler backends; for example, in the CakeML project [8].

Previously, encoders, parsers and printers have been written in Standard ML
(HOL’s meta-language), see [5]. In particular, parsing has been implemented
using parser generators and later with parsing combinators. We now specify en-
coding, parsing and printing using L3, which helps in keeping these components
consistent and synchronised with the core model. L3 is well-suited to specifying
instruction encoders, since the language provides excellent support for working
with bit-vectors. The complete specification is exported to ML and this is then
used to write simple assemblers, using a relatively small piece of hand coded
ML. The parser and printer specifications are not exported to HOL.



12

7 Performance

In presenting a faster decompilation algorithm, Myreen et al. provided some
benchmarks figures, see Table 2. Following the changes presented in this paper,
the latest performance figures are shown in Table 3. Column one shows that
the performance of the decompiler itself, which excludes the model evaluation
phase, has improved since 2012.9 This has been achieved by implementing simple
coding improvements within the decompiler and associated library code. The
underlying algorithms, as presented by Myreen et el., have not been modified. Of
most interest is the model evaluation figures (column group two). Three timings
are presented: the first column contains updated figures for the old model and
tools; the second corresponds with generating spec theorems from a ‘cold’ state
(where no instructions have been encountered before) using the new L3 model
and tools; and the third is from a ‘warm’ state, where all of the instructions have
been encountered before.10 It is clear that significant performance improvements
have been achieved. The old tools (see [5]) have again improved due to tweaks
within library code. For the new tools, the performance is at worst just a bit
slower than before (i.e. in the ‘sum of array’ example), however this corresponds
with an outlying case where just four instruction are processed from a cold state.
From a ‘warm’ state, model evaluation is now faster than the main decompilation
phase itself. As such, this new technology has successfully overcome a bottleneck
in scalability. The faster and more general step tools also help in areas such as
model validation and compiler verification.

Table 2. Performance figures found in [13]. Examples: (1) sum of array; (2) copying
garbage collector; (3) 1024-bit multiword addition; and (4) 256-bit Skein hash function.

example code size decompilation time (and inferences) model evaluation

(instructions) original version 2012 version time (and inferences)

1 4 2.5 s (73,039 i) 0.3 s (4019 i) 7.8 s (1.5Mi)

2 89 50 s (1,526,281 i) 6.0 s (53,301 i) 173 s (40Mi)

3 224 70 s (1,029,685 i) 1.2 s (10,802 i) 37 s (8.9Mi)

4 1352 5366 s (21,432,926 i) 56 s (1,842,642 i) 500 s (105Mi)

Table 3. Latest performance figures for the same ARM examples.

decompilation time (and inferences) model evaluation time (and inferences)

original version 2012 version old cold warm

1.47 s (78,688 i) 0.12 s (16,481 i) 3.2 s (0.74Mi) 9.8 s (3.9Mi) 0.02 s (15,521 i)

32.5 s (1,598,271 i) 2.0 s (349,740 i) 51.3 s (16.2Mi) 19.8 s (13.5Mi) 0.35 s (273,725 i)

50.0 s (1,085,104 i) 0.3 s (45,949 i) 20.3 s (3.3Mi) 9.9 s (9Mi) 0.03 s (8435 i)

11,786 s (19,921,648 i) 8.0 s (4,756,617 i) 350 s (44.6Mi) 23.7 s (28Mi) 4.0 s (2.8Mi)

9 The Skein example under the ‘original’ decompiler is an anomaly here.
10 Caching on hexadecimal opcode values has not been enabled, so these run times

correspond with specialising generic spec theorems.



13

Table 4. L3 instruction set models. The ‘Lines of L3’ figure is split into core model
and additional logic (for instruction encoding and assembly code support).

ISA Operating System Levels Instruction General-Purpose Flags Endianness Coverage Lines of L3
Modes Width Registers

ARMv4 to
ARMv7

ARM, Thumb User, System,
(Hypervisor), Abort,
Undefined, (Monitor),
IRQ, FIQ

32-bit,16-bit 32-bit
16† (banked)

N, Z, C, V,
Q, GE

Big, Little Partial VFP
No Adv. SIMD
No CP

9238+7687

ARMv6-M Thumb Main, Process 16-bit 32-bit
16† (SP banked)

N, Z, C, V Big, Little No CP 1996+2095

ARMv8 AArch64 only EL0, EL1, EL2, EL3 32-bit 64-bit
32 (reg. 31 is 0)

N, Z, C, V Big, Little No VFP
No Adv. SIMD
Partial System

2434+4097

x86-64 64-bit only - Variable
(bytes)

64-bit, 16 CF, PF, AF,
ZF, SF, OF

Little 40 basic
instructions

1357+1579

MIPS
(RS4000)

- User, Supervisor,
Kernel

32-bit 64-bit
32 (reg. 0 is 0)

- Big, Little Partial CP
Partial System

2080+700

CHERI - User, Supervisor,
Kernel

32-bit 64-bit
32 (reg. 0 is 0)

- Big Partial CP 5299

†The program-counter is a general-purpose register.

8 Instructions Sets

A summary of our ISA formalisations in L3 is shown in Table 4. The following
sections give a brief overview of these architectures.

ARMv4 through to ARMv7. Although nominally a RISC architecture, ARM is
challenging from a specification and verification perspective. Areas of complexity
are: the number of system levels and the use of banked general-purpose registers;
the program-counter is a general-purpose register,11 which leads to unpredictable
behaviour (see Section 2); and the LDM and STM block data transfer instructions
are remarkably elaborate. As part of previous work, described in [5], a fairly large
set of single instruction test vectors were developed for the purposes of ARMv7
validation. These tests have helped identify a handful of bugs in the new L3
specification, which were all trivial to fix. The new model is now considered to
be as trustworthy as the previous version, which was specified directly in HOL.
We have no plans to formally verify a correspondence between the two models.

A notable change to the new specification is with regard to the specification of
unpredictable and undefined12 instruction instances. This logic has moved from
instruction semantics functions to decoders. As such, the decoders can be used
to check the validity of instruction encodings, which is useful when writing an
assembler, see Section 6. The instruction semantics functions have also become
easier to work with.

11 When an instruction explicitly reads the PC this normally gives the value of that
instruction’s address plus eight (in ARM mode) or plus four (in Thumb mode). This
is because early ARM processors employed a 3-stage pipeline.

12 An instruction opcode is undefined when it is not supported by an architecture
version or configuration. For example, CLZ opcodes on ARMv4 will raise an undefined
exception trap.



14

ARMv6-M. This architecture is implemented by the Cortex-M0 micro-controller
and our model includes processor timing information (a cycle counter). Extensive
model validation has been carried out by Brian Campbell [1].

ARMv8. This is a completely new 64-bit architecture. Although compatibility
with ARMv7 is provided with an AArch32 operating mode, our L3 formalisa-
tion omits this functionality and just supports the new AArch64 mode. The
instruction set is completely new; as is the underlying programmer’s model. Our
formalisation is currently awaiting validation. Due to some rationalisations in the
ARMv8 architecture (in AArch64 mode), this ISA is actually cleaner and easier
to work with when compared to ARMv7. There are still some complexities, e.g.
the various encoding schemes for immediate values are somewhat elaborate.

x86-64. Being an older CISC architecture, the x86 family is renowned for its
size and complexity. However, we only provide a comparatively simple model of
x86-64 in L3, which covers just 64-bit operating mode for a core set of about
forty instructions (providing adequate coverage for case studies). This was ported
from a native HOL4 specifications. Some limited model validation with respect
to hardware has been carried out with the assistance of Magnus Myreen.

MIPS64 and CHERI.MIPS64 is a relatively clean RISC architecture. The CHERI
research architecture extends MIPS with capabilities for implementing security
management, see [17]. One source of complexity for MIPS is the presence of a
branch-delay slot, which affects the semantics of jump instructions. The CHERI
model permits multi-core operation and also adds support for: interrupts; UART
I/O; a translation lookaside buffer (TLB); and more coprocessor instructions.
This advanced, high-fidelity model is primarily used for emulation, validation
and rapid prototyping. The model is mature enough that it can boot an un-
modified development version of FreeBSD (which has a 7.2MB image size) in
about ten minutes on a modern machine. Booting the OS in multi-core mode
is supported as well. Alexandre Joannou, Matthew Taylor and Mike Roe have
worked on the extended MIPS and CHERI models, and this development can
be found on Github at github.com/acjf3/l3mips.

9 Related Work

Other recent work on reasoning about machine-code programs has mainly been
undertaken using the ACL2 and Coq theorem provers. Most of this work has
focussed on the x86 architecture. Related work is carried out in the field of
binary-analysis (using flow-based approaches), where instruction set models are
developed and used in less formal settings, i.e. where machine-code programs
are not formally verified against specifications.

Warren Hunt’s group have developed a high quality model of x86-64 using
ACL2, see [6]. Shilpi et al. report that their ACL2 model covers 121 user-level
instructions (much more than our L3 specification) and they note that there is
work in progress (headed by J S. Moore) on an ACL2 based automated tool,



15

called Code Walker, that is comparable with Myreen’s decompiler. By design, the
ACL2 programming language naturally supports fast model evaluation. Their
x86 model can be tested in an execution mode and proofs can be constructed in
a logical mode. With the former evaluation mode, they achieve a performance
of nearly a million instructions per second, with a two-level page table enabled.
By contrast, HOL4 is an LCF-style theorem prover that is not designed for
high performance model evaluation. As such, when carrying out emulation work
we generate Standard ML versions of our models. When reasoning in the HOL
logic, the techniques presented in this paper provide sufficient performance for
formal verification work. We consider the main advantages of our approach to be
that our ISA models are compact and accessible (through the use of a domain
specific language); and also that our infrastructure for supporting automated
decompilation to logic (for multiple ISAs) is now relatively mature.

As part of the Rocksalt project (for a software-based fault isolation checker),
Morrisett et al. have developed an x86 model in Coq, see [11]. Other x86 models
have been developed in Coq as part of research into devising logical frameworks
for reasoning about low-level code, see [14] and [7]. In addition, simple assembly-
level Coq models of x86, PowerPC and ARM have also been used within the
CompCert verified compiler, see [9].

Within the area of binary-analysis, the work of Reps et al. is of note, see [10].
They use a domain specific language TSL to specify ISAs, including PowerPC
and x86. Recently, they have customised L3, so as to generate TSL code from
our ARMv7 model. These TSL specifications are used to generate a range of
binary-analysis tools. Related work includes the GDSL toolkit of Simon et al.,
see [16]. They have a used a domain specific language to specify (fast) decoders,
as well as semantics translators, e.g. for x86 and Atmel AVR. At present it is
unclear how easy it would be to adapt their work for the purposes of formal
verification using an interactive theorem prover.

10 Summary

This paper describes the current status of our models, tools and methodology
for the formal verification of machine-code programs. Our approach is based on
using three programming environments: L3 for developing ISA specifications;
Standard ML (compiled using Poly/ML or MLton) for efficient emulation; and
HOL4 for formal reasoning. L3 has eased the task of developing instruction set
specifications, and it has also helped ensure that generated HOL models are of
a known and manageable form. Improved techniques for model evaluation are
presented and proof tools have been implemented. The performance of machine-
code decompilation has been greatly enhanced, see Section 7. These gains have
been achieved by maintaining various databases of pre-proved theorems, see Sec-
tions 3 and 4. In particular, the spec tool now maintains a database of generic spec
theorems. These methods are applicable to other LCF-style theorem provers.

Thanks to Mike Gordon, Magnus Myreen and the reviewers for providing
helpful comments on drafts of this paper.



16

References

1. Campbell, B., Stark, I.: Randomised testing of a microprocessor model using SMT-
solver state generation. In: Lang, F., Flammini, F. (eds.) FMICS 2014. Lecture
Notes in Computer Science, vol. 8718, pp. 185–199. Springer (2014)

2. Dam, M., Guanciale, R., Nemati, H.: Machine code verification of a tiny ARM
hypervisor. In: Sadeghi, A., Armknecht, F., Seifert, J. (eds.) TrustED’13. pp. 3–
12. ACM (2013)

3. Fox, A.C.J.: LCF-style bit-blasting in HOL4. In: van Eekelen, M.C.J.D., Geuvers,
H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. Lecture Notes in Computer Science,
vol. 6898, pp. 357–362. Springer (2011)

4. Fox, A.C.J.: Directions in ISA specification. In: Beringer, L., Felty, A.P. (eds.) ITP
2012. Lecture Notes in Computer Science, vol. 7406, pp. 338–344. Springer (2012)

5. Fox, A.C.J., Myreen, M.O.: A trustworthy monadic formalization of the ARMv7
instruction set architecture. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010.
Lecture Notes in Computer Science, vol. 6172, pp. 243–258. Springer (2010)

6. Goel, S., Hunt, Jr., W.A., Kaufmann, M., Ghosh, S.: Simulation and formal veri-
fication of x86 machine-code programs that make system calls. In: FMCAD 2014.
pp. 91–98. IEEE (2014)

7. Jensen, J.B., Benton, N., Kennedy, A.: High-level separation logic for low-level
code. In: Giacobazzi, R., Cousot, R. (eds.) POPL 2013. pp. 301–314. ACM (2013)

8. Kumar, R., Myreen, M.O., Norrish, M., Owens, S.: CakeML: a verified implemen-
tation of ML. In: Jagannathan, S., Sewell, P. (eds.) POPL 2014. pp. 179–192. ACM
(2014)

9. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (2009)

10. Lim, J., Reps, T.W.: TSL: A system for generating abstract interpreters and its
application to machine-code analysis. ACM Trans. Program. Lang. Syst. 35(1), 4
(2013)

11. Morrisett, G., Tan, G., Tassarotti, J., Tristan, J., Gan, E.: Rocksalt: better, faster,
stronger SFI for the x86. In: Vitek, J., Lin, H., Tip, F. (eds.) PLDI 2012. pp.
395–404. ACM (2012)

12. Myreen, M.O., Gordon, M.J.C.: Hoare logic for realistically modelled machine code.
In: Grumberg, O., Huth, M. (eds.) TACAS 2007. Lecture Notes in Computer Sci-
ence, vol. 4424, pp. 568–582. Springer (2007)

13. Myreen, M.O., Gordon, M.J.C., Slind, K.: Decompilation into logic — improved.
In: Cabodi, G., Singh, S. (eds.) FMCAD. pp. 78–81. IEEE (2012)

14. Ni, Z., Yu, D., Shao, Z.: Using XCAP to certify realistic systems code: Machine
context management. In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007. Lecture
Notes in Computer Science, vol. 4732, pp. 189–206. Springer (2007)

15. Sewell, T.A.L., Myreen, M.O., Klein, G.: Translation validation for a verified OS
kernel. In: Boehm, H.J., Flanagan, C. (eds.) PLDI. pp. 471–482. ACM (2013)

16. Simon, A., Kranz, J.: The GDSL toolkit: Generating frontends for the analysis
of machine code. In: Jagannathan, S., Sewell, P. (eds.) PPREW 2014. p. 7. ACM
(2014)

17. Woodruff, J., Watson, R.N.M., Chisnall, D., Moore, S.W., Anderson, J., Davis, B.,
Laurie, B., Neumann, P.G., Norton, R., Roe, M.: The CHERI capability model:
Revisiting RISC in an age of risk. In: ISCA 2014. pp. 457–468. IEEE Computer
Society (2014)


