
Verifying ARM6 Multiplication

Anthony Fox

Computer Laboratory, University of Cambridge

Abstract. The hol-4 proof system has been used to formally verify the
correctness of the ARM6 micro-architecture. This paper describes the
specification and verification of the multiply instructions. The processor’s
implementation is based on the modified Booth’s algorithm. Correctness
is defined using data and temporal abstraction maps. The ARM6 is a
commercial RISC microprocessor that has been used extensively in em-
bedded systems – it has a 3-stage pipeline with a multi-cycled execute
stage. This paper describes the approach used in the formal verification
and presents some key lemmas.

1 Introduction

This paper discusses the ARM6 implementation of the multiply instructions, and
the formal verification using the hol proof system. For information about the
ARM architecture the reader is referred to Furber and the ARM Architecture
Reference Manual [10, 22]. The verification of the block data transfer instruction
class and all of the remaining instructions is documented elsewhere [9, 8]. The
approach used is based on an algebraic framework for correctness that was de-
veloped at Swansea [12] and later implemented in hol at Cambridge [7]. Work
has continued at Swansea using Maude [13].

The processor’s micro-architecture and instruction set architecture (ISA) are
given functional specifications (they are modelled with state functions); correct-
ness is established with respect to data and temporal abstraction maps. An
immersion gives the times at which the processor’s state corresponds with the
programmer’s model specification.

The formal verification is based on symbolic execution – the instruction set,
micro-architecture and abstractions (which are all modelled with functions) are
evaluated using term-rewriting. This method is highly dependable (when using
a fully expansive theorem prover, such as hol), flexible and widely applicable,
since it is not tailored to specific types of design. Also, proofs can be reason-
ably robust with respect to changes in the design. It was possible to verify the
multiplies in isolation from the rest of the instruction set. Another advantage
of producing functional specifications is that one can carry out simulations: our
models were sanity checked by executing small ARM assembler programs – this
is especially helpful with complex instructions, such as the block data transfers
and multiplication. hol-4 has proved to be well suited to this methodology: it
provides good support for defining data types and functions; and the specifi-
cation can be executed using call-by-value conversion [2]. The maturity of the



system means that one can draw upon a range of existing theories. It is also
possible to develop new theories, construct lemmas and introduce abstractions
as required. For example, a theory of n-bit words (based on modular arithmetic)
was developed for this work. The correctness framework is naturally formalised
in higher-order logic – one can define and reason about correctness in an abstract
setting. This guarantees that the definition of correctness is identical from one
case study to the next and helps ensure there is no ambiguity as to what has
been proved. One can also prove and make use of general results, such as the
one-step theorems [7].

The ARM6 implementation of multiplication is unusual in that the operation
is not directly provided by the ALU. Instead, execution is multi-cycled with the
processor’s control logic making use of a barrel shifter and the ALU. This means
that there is no clear split between the data and control aspects of the design.
Therefore, any methodology that seeks to separately reason about control and
data will encounter problems in this context. Although the ARM6 multiplication
is not representative with respect to modern microprocessor implementations,
one cannot rule out other circumstances in which a processor’s control and data
aspects become intertwined.

The nature of ARM6 multiplication has meant that it is not wholly straight-
forward to symbolically execute the model. In verifying this instruction class,
an induction over time was used to establish the value of the destination reg-
ister for each cycle of the pipeline’s execute stage. This is a departure from
previous work [8] in which such an induction is not necessary. The correctness
of the modified Booth’s algorithm is established with a couple of key lemmas;
these abstract out many details found in the ARM6 model. Although the ARM6
model is complex, proof run-time has not been a problem – the entire processor
verification takes just a few minutes.

An ISA specification of the multiply instructions is presented in Section 2.
The ARM6 implementation is based on a form of Booth’s algorithm, and the
micro-architecture specification is discussed in Section 3. A formalisation of cor-
rectness, in terms of data and temporal abstraction maps, is given in Section 4.
The formal verification in hol is then discussed in Section 5.

1.1 Related Work

Early work on the mechanical verification of processors includes: tamarack [16],
secd [11], the partial verification of Viper [6], Hunt’s FM8501 [14], and the
generic interpreter approach of Windley [23]. Following this work, Miller and
Srivas verified some of the instructions of a simple commercial processor called
the AAMP5 [20]. Complex commercial designs have also been specified, simu-
lated and verified using ACL2 [4, 17].

With the addition of complex multi-stage pipelines and out-of-order execu-
tion, contemporary commercial designs were considered too complex for complete
formal verification. Recently progress has been made in verifying academic de-
signs based around Tomasulo’s algorithm [19, 15, 21, 3]. The instruction sets used



for this work are often relatively simple, with many based on the DLX archi-
tecture of Hennessy and Patterson. Most recent projects have used variants of
the flushing correctness model of Burch and Dill [5]. It has been observed that
the Burch and Dill model is not perfect and, rather confusingly, plenty of alter-
natives exist [18, 1]. We use a strict, well-founded correctness model that is not
specific to pipelined designs.

2 ARM Multiply Instructions

The ARM multiply instruction syntax is:

MUL{<cond>}{S} Rd, Rm, Rs

MLA{<cond>}{S} Rd, Rm, Rs, Rn

These instructions carry out 32-bit1 multiplication with registers Rm and Rs. The
result is stored in the destination register is Rd and the accumulate version (MLA)
increments the result with register Rn. As with all other ARM instructions, the
execution is conditional, as designated by a condition code <cond>. The S suffix
indicates that the N, Z and C flags are to be set in the Current Program Status
Register (CPSR). The instruction encoding is shown in Figure 1.

31 28 27 22 21 20 19 16 15 12 11 8 7 4 3 0

Cond 0 0 0 0 0 0 A S Rd Rn Rs 1 0 0 1 Rm

operand registers

destination register

set condition codes

accumulate

Fig. 1: Machine encoding for multiply instructions.

2.1 HOL Specification

A hol specification for the multiply instructions is shown in Figure 2. The
function MUL MLA gives the programmer’s state after executing the multiply in-
struction; this function takes the current programmer’s model state (formed with
the constructor ARM), the state of the carry flag, the processor mode and the in-
struction’s op-code n. The op-code is decoded into a 6-tuple using the function
DECODE MLA MUL. The register arguments rm, rs and rn are obtained by reading
from the register map reg.

The multiplication result forms a 4-tuple and this is determined by the fol-
lowing function:

1 Signed and unsigned long multiplication is only supported by later generations of
ARM processors.



d̀ef MLA_MUL (ARM mem reg psr) C mode n =
let (A,S,Rd,Rn,Rs,Rm) = DECODE_MLA_MUL n in
let pc_reg = INC_PC reg in
let rn = REG_READ reg mode Rn
and rs = REG_READ reg mode Rs
and rm = REG_READ pc_reg mode Rm in
let (N,Z,C_s,res) = ALU_multiply A rm rs rn C in

if (Rd = 15) ∨ (Rd = Rm) then
ARM mem pc_reg psr

else
ARM mem (REG_WRITE pc_reg mode Rd res)

(if S then CPSR_WRITE psr (SET_NZC (N,Z,C_s) (CPSR_READ psr)) else psr)

Fig. 2: The ARM multiply specification.

d̀ef ALU_multiply A rm rs rn C =
let res = if A then rm * rs + rn else rm * rs in

(MSB res, res = word_0, MLA_MUL_CARRY rm rs C, res)

The first two elements are truth values and these indicate whether the result is
negative or equal to zero. The third element is the carry, but this truth value
will vary from one processor design to the next. The function MLA MUL CARRY

gives the carry value associated with the ARM6 implementation – this is the
last carry-out value from the barrel shifter. If the S flag is set then the CPSR is
updated. The result res is stored in register Rd.

Multiply instructions are not valid when the destination register is the same
as the multiplier register Rm or is the program counter (register fifteen). To make
our specification (and verification) total, the programmer’s model is made to
conform with ARM6 behaviour: in these cases the instruction is effectively a no-
op. This is actually a pragmatic simplification of the true ARM6 behaviour: if Rd
is equal to Rm then an MLA instruction will give a nonsense result. Modelling and
verifying this would have added a reasonable amount of complication, whereas it
was quite simple to modify the ARM6 model to give the no-op behaviour. Code of
this form should not exist because the architecture reference books say that such
code is unpredicatable. Our model is a legitimate variant of the actual ARM6,
however the absolute assurance provided by this formal verification would only
be fully realised if this ARM6 model were taken to the point of fabrication.

3 ARM6 Multiplication

When the ARM6 was developed, in the early 1990s, ARM was a small com-
pany with limited resources, therefore it was important for them to keep the
design complexity (and cost) of their new processor down. This would help re-
duce the time to market, and by having a low transistor count the processor
would consume less power. To this end, the processor’s ALU was limited to
addition/subtraction; multiplication is implemented by the processor’s control
logic, which makes use of the barrel shifter and the ALU. The ARM6 data path
is shown in Figure 3. The multiply instructions can take up to seventeen clock



cycles to complete, this is because the multi-cycled implementation is based on
the modified Booth’s algorithm. Although ARM6 multiplication is pretty slow, it
is not a frequently used instruction class and in many cases assembly code can be
optimised by replacing simple multiplications with a small number of other data
operations (all data processing instructions can shift one of their arguments).

Mux Mux

Memory
Interface

Register Bank
(37 registers)

AREG

DIN

ALUB

ALUA

Field
Extractor

&
Field

Extender

Shifter

4

+

ALU

A

B

Fig. 3: The ARM6 data path.

A pseudo-code description of the modified Booth’s algorithm is presented in
Appendix A. When accumulating, the result rd is initially set to the value rn,
otherwise it is set to zero. For each triple of bits2 in the multiplicand rs, the
multiplier rm is shifted left (2n or 2n+ 1 places) and then conditionally added
or subtracted from rd . The bit triples account for the eight cases found in the
body of the while loop – this loop is terminated when the remaining bits of rs
are all zero.

Figure 4 shows how the multiply instructions have been implemented by the
ARM6. Booth’s algorithm is implemented using the resources of the processor’s
data path i.e. using the two busses, the barrel shifter and the ALU, with the
arguments read from the bank of registers. The micro-architecture’s state space
is augmented with four components: mul, mul2, borrow2 and mshift. The im-
plementation also makes use of three latches: mul1, borrow and count1. These
latches are set during the first clock phase and their values are then used in the
second phase. Cycle t3 sets up the computation and cycle tn is repeated until a
termination condition is met. Note that square brackets are used to denote bit
ranges.

Let W` represent the set of `-bit words and B = {>,⊥}. The next shift
amount for the multiplier register Rm is stored in the component mshift; this

2 For n < 32 , bit 2n− 1 is called the borrow (which is false when n = 0), and bits 2n
and 2n+ 1 form the 2-bit value mul .



t3 Fetch an instruction
Increment the program counter
Set mul1 to reg[Rs]

Set borrow to false
Set count1 to zero
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
Set reg[Rd] to reg[Rn] if accumulate, otherwise zero
Set mul to mul1[1:0]

Set mul2 to mul1[31:2]

Set borrow2 to borrow

Set mshift to MSHIFT2(borrow,mul,count1)

tn Set alub to reg[Rm] shifted left by mshift

Set alua to reg[Rd]

Set mul1 to mul2[29:0]

Set borrow to mul[1]

Set count1 to mshift[4:1] + 1

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
Set reg[Rd] to ALU6∗(borrow2,mul,alua,alub)
Set mul to mul1[1:0]

Set mul2 to mul1[31:2]

Set borrow2 to borrow

Set mshift to MSHIFT2(borrow,mul,count1)

Update NZC flags of CPSR (if S flag set)
If the last iteration then decode the next instruction

Fig. 4: ARM6 implementation of the multiply instructions. Each cycle is split into
two phases. The tn cycle is repeated until MULX(mul2,borrow,mshift) is true.
Register Rd is not updated when Rd is equal to Rm or fifteen.



value is defined by the function MSHIFT2 : B×W2 ×W4 →W5,

MSHIFT2(borrow ,mul , count1 ) =

count1 ∗ 2 +

{
1, if borrow ∧ (mul = 1) ∨ ¬borrow ∧ (mul = 2)

0, otherwise.

Register Rd is updated with the output value from the ALU; on the tn cycles
this is given by the function ALU6∗ : B×W2 ×W32 ×W32 →W32,

ALU6∗(borrow2 ,mul , alua, alub) =




alua, if borrow2 ∧ (mul = 3) ∨ ¬borrow2 ∧ (mul = 0),

alua + alub, if borrow2 ∧ (mul = 0) ∨ (mul = 1),

alua − alub, otherwise.

The termination condition is given by the function MULX : W32×B×W5 → B,

MULX(mul2 , borrow ,mshift) =

(mul2 [29 : 0] = 0) ∧ ¬borrow ∨ (mshift [4 : 1] = 15) .

When this condition holds, register Rd has the required value. On the last cycle
the next instruction is decoded, ready for execution on the next cycle.

Observe that there is a correspondence between the pseudo-code description
of Booth’s algorithm (Appendix A) and the ARM6 implementation. The func-
tions MSHIFT2 and ALU6∗ combine to cover each of the eight cases found in the
while loop. The operation rs div 4 and rs mod 4 are effectively implemented
by selecting bit ranges i.e. with mul1[31:2] and mul1[1:0] respectively. The
component count1 corresponds with the counter n. Beyond carrying out the
multiplication, the processor must also set the NZC flags, update the program
counter and maintain a consistent pipeline state.

3.1 HOL Specification

The hol model of the ARM6 [8] was modified to incorporate the multiply in-
structions. This involved adding new cases when defining the behaviour of the
ALU and barrel shifter. Appendix C presents functions that were entirely new
to the specification, and Appendix B defines the primitive bit operations. These
functions correspond with some of the operations found in Figure 4 and are
used in defining the next state function NEXT ARM6. The functions are made to-
tal with the use of ARB; the newly added components are of no significance when
not executing a multiply instruction.

The initialisation function INIT ARM6 is an identity map with respect to the
state components mul, mul2, borrow2 and mshift. These components are set
during the t3 cycle of the multiplication, so they can take any value at the end
of executing the previous instruction.



4 Correctness

The correctness model has been discussed in technical reports [7, 8]. Principally,
one must prove that the following theorem holds:

Commutativity Theorem:

` ∀ t a. STATE_ARM_PIPE t (ABS_ARM6 a) = ABS_ARM6 (STATE_ARM6 (IMM_ARM6 a t) a)

where STATE ARM PIPE is the ISA level state function, STATE ARM6 is the micro-
architecture model, IMM ARM6 is a uniform immersion (temporal abstraction
map) with duration function DUR ARM6, and ABS ARM6 is a data abstraction.

The data abstraction is, as before, essentially a projection [8]. The dura-
tion map DUR ARM6 must now specify how long it takes to execute a multiply
instruction. The duration is:

1 + MLA_MUL_DUR (REG_READ6 reg nbs (WORD_BITS 11 8 ireg))

where nbs is the current processor mode, and

d̀ef MLA_MUL_DUR rs = LEAST n. MLA_MUL_DONE rs n

d̀ef MLA_MUL_DONE rs n =
¬(n = 0) ∧ (WORD_BITS HB (2 * n) rs = 0) ∧ ¬BORROW2 rs n ∨
¬(2 * n < WL)

Constant HB is thirty-one and WL is thirty-two. The function MLA MUL DUR gives
the number of tn cycles; this is the least cycle (less than or equal to sixteen) such
that the MULX condition becomes true. The total duration includes the single t3
cycle, thus giving a value in the range two to seventeen. Note that the instruction
timing is purely dependent upon the value of the multiplicand rs.

One of the advantages of using an immersion is that it can be used when
simulating the processor; it gives the number of cycles needed to execute any
given number of instructions. However, the duration cannot be readily evaluated
using the hol conversions EVAL and CBV CONV because the LEAST operator will
cause non-termination. Instead the definition is expanded as follows:

` MLA_MUL_DUR (n2w rs) =
if BITS 31 1 rs = 0 then 1 else
if BITS 31 3 rs = 0 then 2 else
if BITS 31 5 rs = 0 then 3 else

..
if BITS 31 27 rs = 0 then 14 else
if BITS 31 29 rs = 0 then 15 else 16

Here n2w maps natural numbers to 32-bit words (w2n maps in the other direc-
tion). If the value of register Rs is known then this theorem can be used to give
the number of cycles needed to execute the multiply instruction.

5 Formal Verification

The formal verification of correctness is based on the use of one-step theorems [7].
These theorems are used to eliminate the universal quantification over time in
the commutativity theorem (Section 4) i.e. it is sufficient to verify the following
four theorems:



1 ` ∀ a. (STATE_ARM6 (IMM_ARM6 a 0) a = a’) ⇒ (INIT_ARM6 a’ = a’)

2 ` ∀ a. (STATE_ARM6 (IMM_ARM6 a 1) a = a’) ⇒ (INIT_ARM6 a’ = a’)

3 ` ∀ a. STATE_ARM_PIPE 0 (ABS_ARM6 a) = ABS_ARM6 (STATE_ARM6 (IMM_ARM6 a 0) a)

4 ` ∀ a. STATE_ARM_PIPE 1 (ABS_ARM6 a) = ABS_ARM6 (STATE_ARM6 (IMM_ARM6 a 1) a)

Theorems 1 and 3 are trivial to verify and so the main proof effort lies in deter-
mining the state of the processor after executing one instruction i.e. at the cycle
IMM ARM6(a)(1).

The verification of Theorems 2 and 4 proceeds with case splitting over the
instruction class. The instruction classes that had already been covered were
verified using the existing proof scripts – the approach is quite robust with
respect to changes in the design. The case when the instruction class is mla mul

is tackled independently.
The state of the processor after executing an instruction is given by:

FUNPOW NEXT_ARM6 (DUR_ARM6 (INIT_ARM6 a)) (INIT_ARM6 a)

where FUNPOW(f)(n)(a) is function iteration i.e. fn(a). With most instruction
classes the duration is a constant value and so the proof can proceed by expand-
ing with the definition of NEXT ARM6. The duration for multiply instructions is a
function of the multiplicand, therefore a different approach must be used.

The processor state after the first cycle (t3) can be determined; that is, one
can rewrite using the definitions of INIT ARM6, DUR ARM6, FUNPOW and NEXT ARM6.
To proceed further one must construct a theorem of the form:

Multiply tn: ` ∀ n. n ≤ MLA_MUL_DUR rs ⇒ (FUNPOW NEXT_ARM6 i x = Xn)

where x represents the state after the t3 cycle and Xn is the state after the
nth following cycle.3 When this theorem is specialised, with n taking the value
MLA MUL DUR(rs), it is relatively straightforward to complete the proofs for The-
orems 2 and 4. The term Xn was constructed manually and the theorem above
is verified by induction on the variable n. Of most significance is the state of the

Table 1: Selected data and control component values for cycle n.

reg

if (Rd = 15) ∨ (Rd = Rm) then
REG_WRITE reg nbs 15 (pc + n2w 4)

else
REG_WRITE (REG_WRITE reg nbs 15 (pc + n2w 4)) nbs Rd

(RD_INVARIANT (WORD_BIT 21 ireg) rm rs rn n)

mul BITS 1 0 (WORD_BITS HB (2 * n) rs)
mul2 WORD_BITS HB (2 * (n + 1)) rs
borrow2 BORROW2 rs n
mshift MSHIFT2 borrow2 mul (BITS 3 0 n)

four new control components and the state of register bank – in particular, the

3 The actual theorem is too unwieldy to present here i.e. x and Xn are large terms.



value of register Rd – see Table 1. After cycle t3, the program counter has been
incremented. If the destination register (Rd) is fifteen or Rm, then the register
bank is not modified; there is no early termination for these cases. Otherwise,
the value of register Rd is given by the function RD INVARIANT, which is defined
as follows:

d̀ef RD_INVARIANT A rm rs rn n =
(if BORROW2 rs n then

rm * n2w (w2n rs MOD 2(2 ∗ n)) - rm << (2 * n)
else

rm * n2w (w2n rs MOD 2(2 ∗ n))) + if A then rn else word_0

If there is not a borrow then Rd stores the result of multiplying rm by the first
2n bits of the multiplicand rs, and if A is true then rn is also added. If there is
a borrow then this partial product can be obtained by adding the value of rm
shifted left by 2n places. There is not a borrow when n is zero. On the last cycle:

Rd Last:

` ∀ A rm rs rn.
RD_INVARIANT A rm rs rn (MLA_MUL_DUR rs) = rm * rs + (if A then rn else word_0)

This means that when the MULX condition becomes true, the value of register Rd
conforms with the ISA specification i.e. the multiplication is complete.

In verifying the theorem Multiply tn by induction, it was relatively easy to
establish that the ARM6 gives the right values for the four control components
in Table 1. In order to verify that register Rd has the right value, the following
lemma is used:

Rd Induction Step:

` ∀ n a rm rs rn.
RD_INVARIANT A rm rs rn (n + 1) =

(let borrow2 = BORROW2 rs n and
mul = WORD_BITS (2 * n + 1) (2 * n) rs

in
ALU6_MUL borrow2 mul (RD_INVARIANT A rm rs rn n) (rm << MSHIFT2 borrow2 mul n))

Here ALU6 MUL corresponds with ALU6∗ from page 7. This theorem shows that
the next value for register Rd is correctly given by our ALU definition. The
ALU must be supplied with the appropriate values; for example, alua holds
the current value of register Rd, and alub holds the value of register Rm shifter
left according to the definition of MSHIFT2. There are sixteen cases to consider,
covering all possible values for the variables A, borrow2 and mul. Each sub-goal
is discharged using word arithmetic theorems; one case is illustrated with an
informal proof in Appendix D.

In effect, Rd Induction Step and Rd Last provide a proof of the correctness
for the algorithm presented in Appendix A. These lemmas hide (abstract out)
many of the control and data path details from the ARM6 model. Theorem
Multiply tn shows that the ARM6 implements this algorithm, but it also gives
the values for all the other control and data path components. In particular, it
is necessary to establish the state of the pipeline and the state of the CPSR,
which may have the condition code flags updated. Also, one must show that the
function MULX becomes true at the time given by the duration function.



6 Summary

The ARM’s multiply instructions have a fairly simple semantics (Figure 2), but
the ARM6 implementation is quite unusual. With previous processor verifica-
tions data operations have been implemented by the ALU, and this provides
a convenient abstraction mechanism. With the ARM6 implementation, the se-
mantics of multiplication is inseparable from the processor’s control logic. To be
faithful to the ARM6 micro-architecture it was necessary to verify a modified
form of Booth’s algorithm. To execute a multiply instruction, the processor’s
next state function must be iterated up to seventeen times; this corresponds
with the loop part of the algorithm in Appendix A.

By virtue of this unusual implementation, the duration function (used to
specify the instruction timing) employs the LEAST operator, with the duration
dependent upon the value of a 32-bit general purpose register, as opposed to
being a simple function of the instruction op-code. This has not introduced any
significant difficulty: the definition can be expanded to facilitate simulation, and
hol provides support for reasoning under the semantics of LEAST.

The formal verification hinges around verifying a theorem Multiply tn, which
gives the processor’s state after each tn cycle (Figure 4). This theorem was
manually constructed and then checked by induction – making use of the lemma
Rd Induction Step. This theorem is then specialised with the length of the tn
stage and lemma Rd Last shows that the final value of register Rd is as required.
The two lemmas abstract out many of the details of the ARM6 implementation,
focusing purely on the workings of the Booth’s algorithm. The hol theories of
bits and n-bit words were used to reason about the word arithmetic. The proof
run-times are independent of the word length and so the thirty-two bit word
length was not a problem. This is one of the advantages of using a theorem
proving approach when compared with model checking.

Although it is atypical for an ALU not to implement multiplication, mod-
elling and verifying this instruction class was a worthwhile exercise. All of the
ARM6 instructions have now been verified.

References

1. Mark D. Aagaard, Byron Cook, Nancy A. Day, and Robert B. Jones. A framework
for microprocessor correctness statements. In CHARME 2001, volume 2144 of
LNCS, pages 433–448. Springer, 2001.

2. Bruno Barras. Programming and computing in HOL. In Mark Aagaard and John
Harrison, editors, TPHOLs 2000, volume 1869 of LNCS, pages 17–37. Springer,
2000.

3. Sven Beyer, Chris Jacobi, Daniel Kröning, Dirk Leinenbach, and Wolfgang Paul.
Instantiating uninterpreted functional units and memory system: Functional verifi-
cation of the VAMP. In Daniel Geist and Tronci Enrico, editors, Correct Hardware
Design and Verification Methods, volume 2860 of Lecture Notes in Computer Sci-
ence, pages 51–65. Springer-Verlag, 2003.



4. Bishop Brock, Matt Kaufmann, and J Strother Moore. ACL2 theorems about
commercial microprocessors. In Mandayam K. Srivas and Albert Camilleri, editors,
FMCAD ’96, volume 1166 of LNCS, pages 275–293. Springer-Verlag, 1996.

5. Jerry R. Burch and David L. Dill. Automatic verification of pipelined micro-
processor control. In David L. Dill, editor, Proceedings of the 6th International
Conference, CAV ’94: Computer Aided Verification, volume 818 of Lecture Notes
in Computer Science, pages 68–80, Berlin, 1994. Springer-Verlag.

6. Avra Cohn. The notion of proof in hardware verification. Journal of Automated
Reasoning, 5(2):127–139, June 1989.

7. Anthony Fox. An algebraic framework for modelling and verifying microprocessors
using hol. Technical Report 512, University of Cambridge, Computer Laboratory,
April 2001.

8. Anthony Fox. Formal verification of the ARM6 micro-architecture. Technical
Report 548, University of Cambridge Computer Laboratory, November 2002.

9. Anthony Fox. Verifying the ARM block data transfer instructions. Technical report
to be presented at DCC 2004, March 2004.

10. Steve Furber. ARM: system-on-chip architecture. Addison-Wesley, second edition,
2000.

11. Brian T. Graham. The SECD Microprocessor, A Verification Case Study. Kluwer
International Series in Engineering and Computer Science. Kluwer Academic Pub-
lishers, 1992.

12. Neal Harman and John Tucker. Algebraic models and the correctness of micropro-
cessors. In George Milne and Laurence Pierre, editors, Correct Hardware Design
and Verification Methods, volume 683 of Lecture Notes in Computer Science, pages
92–108. Springer-Verlag, 1993.

13. Neal A. Harman. Verifying a simple pipelined microprocessor using Maude. In
M Cerioli and G Reggio, editors, Recent Trends in Algebraic Development Tech-
niques: 15th Int. Workshop, WADT 2001, volume 2267 of Lecture Notes in Com-
puter Science, pages 128–151. Springer-Verlag, 2001.

14. Warren A. Hunt, Jr. FM8501: A Verified Microprocessor, volume 795 of LNCS.
Springer-Verlag, 1994.

15. Robert B. Jones, Jens U. Skakkebæk, and David L. Dill. Formal verification of out-
of-order execution with incremental flushing. Formal Methods in System Design,
20(2):139–158, March 2002.

16. Jeffrey J. Joyce. Formal verification and implementation of a microprocessor. In
Graham Birtwistle and P. A. Subrahmanyam, editors, VLSI Specification, Verifi-
cation and Synthesis, pages 129–157. Kluwer Academic Publishers, 1988.

17. Matt Kaufmann, Panagiotis Manolios, and J Strother Moore, editors. Computer-
Aided Reasoning: ACL2 Case Studies. Kluwer Academic Publishers, June 2000.

18. Panagiotis Manolios. Correctness of pipelined machines. In W. A. Hunt, Jr.
and S. D. Johnson, editors, Formal Methods in Computer-Aided Design, FMCAD
2000, volume 1954 of Lecture Notes in Computer Science, pages 161–178. Springer-
Verlag, 2000.

19. K. McMillan. Verification of an implementation of tomasulo’s algorithm by com-
positional model checking. In A. J. Hu and M. Y. Vardi, editors, CAV ’98, volume
1427 of LNCS. Springer-Verlag, 1998.

20. Steven P. Miller and Mandayam K. Srivas. Applying formal verification to the
AAMP5 microprocessor: A case study in the industrial use of formal methods.
Formal Methods in Systems Design, 8(2):153–188, March 1996.



21. Jun Sawada and Warren A. Hunt, Jr. Verification of FM9801: An out-of-order
model with speculative execution, exceptions, and program-modifying capability.
Formal Methods in System Design, 20(2):187–222, March 2002.

22. David Seal, editor. ARM Architectural Reference Manual. Addison-Wesley, second
edition, 2000.

23. Phillip. J. Windley and Michael L. Coe. A correctness model for pipelined micro-
processors. In Ramayya Kumar and Thomas Kropf, editors, TPCD ’94, volume
901 of LNCS, pages 33–51. Springer-Verlag, 1995.

Appendix

A Modified Booth’s Algorithm

Algorithm
Modified Booth’s Algorithm (with accumulator)

Constants
wl : number -- the word length

Input
rm, rs, rn : wl-bit word
accumulate : bool

Output
rd : wl-bit word -- this could just as well have length 2 * wl
rd = if accumulate then rm * rs + rn else rm * rs

Variables
borrow : boolean
n : number
mul : 2-bit word

Pseudo code
borrow := false
n := 0
rd := if accumulate then rn else 0
while (not (rs = 0) or borrow) and n < wl do

begin
mul = rs mod 4
if not borrow then

case mul
of 0 => rd := rd
| 1 => rd := rd + rm << (2 * n)
| 2 => rd := rd - rm << (2 * n + 1); borrow := true
| 3 => rd := rd - rm << (2 * n); borrow := true

else
case mul
of 0 => rd := rd + rm << (2 * n); borrow := false
| 1 => rd := rd + rm << (2 * n + 1); borrow := false
| 2 => rd := rd - rm << (2 * n)
| 3 => rd := rd

rs := rs div 4
n := n + 1

end{while}

Code kindly supplied by Daniel Schostak. (ARM Ltd.)



B Primitive Operations

d̀ef BITS h l n = n MOD 2SUC h DIV 2l

d̀ef BIT b n = (BITS b b n = 1)

d̀ef WORD_BITS h l n = BITS h l (w2n n)

d̀ef WORD_BIT b n = BIT b (w2n n)

C Addendum to the ARM6 Specification

d̀ef MSHIFT2 borrow mul n =
n * 2 + if borrow ∧ (mul = 1) ∨ ¬borrow ∧ (mul = 2) then 1 else 0

d̀ef MSHIFT ic borrow mul count1 =
if ic = mla_mul then MSHIFT2 borrow mul count1 else ARB

d̀ef BORROW2 rs n = ¬(n = 0) ∧ WORD_BIT (2 * n - 1) rs

d̀ef BORROW ic is mul =
if ic = mla_mul then if is = t3 then F else BIT 1 mul else ARB

d̀ef COUNT1 ic is mshift =
if ic = mla_mul then

if is = t3 then 0 else BITS 3 0 (mshift DIV 2 + 1)
else

ARB

d̀ef MUL1 ic is ra mul2 =
if ic = mla_mul then

if is = t3 then w2n ra else BITS (HB - 2) 0 mul2
else

ARB

d̀ef MULZ ic is mul2 =
if (is = tn) ∧ (ic = mla_mul) then

BITS (HB - 2) 0 mul2 = 0
else

ARB

d̀ef MULX ic is mulz borrow mshift =
if (is = tn) ∧ (ic = mla_mul) then

mulz ∧ ¬borrow ∨ (mshift DIV 2 = 15)
else

ARB

D Informal proof: one case of Rd Induction Step

Goal:

` ∀A rm rs rn n. RD INVARIANT(A, rm, rs, rn, n+ 1) =

ALU6∗(borrow2 ,mul ,RD INVARIANT(A, rm, rs , rn, n),

rm � MSHIFT2(borrow2 ,mul , n))

where borrow2 = BORROW2(rs, n) and mul = rs[2n + 1 : 2n]. Note that, for
the purposes of this proof, n and the shift amount are assumed to be natural
numbers.



Case: ¬A, BORROW2(rs, n) and rs[2n+ 1 : 2n] = 1

Expanding the RHS gives:

RD INVARIANT(⊥, rm, rs , rn, n) + rm � MSHIFT2(>, 1, n)
= (rm ∗ n2w(w2n rs mod 22n)− rm � 2n+ word 0) + rm � (2n+ 1)
= rm ∗ n2w(w2n rs mod 22n)− rm � 2n+ rm � 2n ∗ n2w 2
= rm ∗ n2w(w2n rs mod 22n) + rm � 2n .

Expanding the LHS gives:

RD INVARIANT(⊥, rm, rs, rn, n+ 1)
= rm ∗ n2w(w2n rs mod 22(n+1)) + word 0
= rm ∗ n2w(w2n rs mod 22(n+1)) .

N.B. (rs[2n+ 1 : 2n] = 1)⇒ ¬BORROW2(rs, n+ 1).

We now make use of the following theorem:

` ∀na b. a ∗ n2w(w2n b mod 22(n+1)) =

a ∗ n2w(w2n b mod 22n) + (a� 2n) ∗ n2w(b[2n+ 1 : 2n]) .

LHS:

rm ∗ n2w(w2n rs mod 22(n+1))
= rm ∗ n2w(w2n rs mod 22n) + (rm � 2n) ∗ n2w(rs[2n+ 1 : 2n])
= rm ∗ n2w(w2n rs mod 22n) + (rm � 2n) ∗ n2w 1
= rm ∗ n2w(w2n rs mod 22n) + rm � 2n .

�


